國立彰化師範大學九十六學年度碩士班招生考試試題 科目:普通數學(含微積分及線性代數)

組別:甲組

請在答案紙上作答

系所:科學教育研究所

共<u>2</u>頁 第<u>1</u>頁

Evaluate the iterated integral $\int_0^1 \left[\int_y^1 e^{x^2} dx \right] dy$. (10%) 1.

(a) Let f be a function from an interval $I \subseteq \mathbb{R}$ onto an interval $J \subseteq \mathbb{R}$. Suppose that f has an 2. inverse f^{-1} such that f'(x) exists for $x \in I$, and $(f^{-1})'(x)$ exists for $x \in J$. Show that

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))},$$

for each $x \in J$ for which $f'(f^{-1}(x)) \neq 0$ holds.

(b) It is known that $(\sec x)' = \sec x \tan x$. Prove that

$$(\sec^{-1} x)' = \frac{1}{|x|\sqrt{x^2 - 1}}$$
 for $|x| > 1$.

Note that $\sec^{-1} x \in [0, \frac{\pi}{2}] \cup (\frac{\pi}{2}, \pi]$.

- 3. (1) Let $f:[a,b] \rightarrow [a,b]$ be a continuous function. Show that
 - (a) $|f(b) f(a)| \le |b a|$. (5%)

(b) f has a fixed point x in [a, b]; that is, there exists $x \in [a, b]$ such that f(x) = x. (10%)

(2) Let f: \mathbb{R} \mathbb{R} be a contraction; that is, $|f(x) - f(y)| \le \alpha |x - y|$ for all $x, y \in \mathbb{R}$ and for some constant α with $0 < \alpha < 1$. Show that (a) f is uniformly continuous on \mathbb{R} . (5%)

(b) Let $x_0 \in \mathbb{R}$ be fixed. Define $x_n = f(x_{n-1}), n = 1, 2, \cdots$. Then $\{x_n\}$ converges to a point c in \mathbb{R} . (10%)

(c) f has a fixed point in \mathbb{R} ; that is, there exists $c \in \mathbb{R}$ such that f(c) = c. (5%)

(5%)

(10%)

國立彰化師範大學九十六學年度碩士班招生考試試題 系所:科學教育研究所

組別:甲組

請在答案紙上作答

Γ

共<u>2</u>頁 第<u>2</u>頁

٦

科目:普通數學(含微積分及線性代數)

Part II Linear algebra (40%)	
4.	Let A be the 3×3 matrix $\begin{bmatrix} 1 & 1 & 0 \\ -1 & 3 & 0 \\ -1 & 1 & 2 \end{bmatrix}.$
	Find the eigenvalues and eigenspaces of A. Show that A is not diagonalizable but there is anupper triangular matrix that is similar to A.(20%)
5.	Suppose A is a 4×4 matrix such that the solution space of $A^{T}x = 0$ is spanned by the column vector $\begin{bmatrix} 1\\2\\3\\4 \end{bmatrix}$. Here A^{T} is the transpose of A. Find a basis for the orthogonal complement of the column space of A and deduce that the solution space of $Ax = \begin{bmatrix} 1\\2\\4 \end{bmatrix}$ is the empty set. (20%)