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1. Let f  be continuous on [ , ]a b  and let { }sup | ( ) | | [ , ]M f x x a b= ∈ .  

Show that 
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2. (a) Let 0na ≥  and na∑ converge.  Do the series 2
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∑  and na∑  converge or diverge ? 

Prove your answer. (12%) 

    (b) Does the series 
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∑  converge for each x R∈  and converge uniformly on R ?  

Prove your answers. (8%) 
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 { }2( , ) ( , ) | 1x y D x y R xy∈ = ∈ > − .   

Prove that f  is continuous on . (20%) D
 
 

4. (a) Suppose that { }nf  is a sequence of continuous functions on pD R⊆ into qR , and the sequence  

converges uniformly on D  to a function f .  Show that f  is continuous on D . (15%) 

(b) Show, by an example, that if the convergence in (a) is not uniform, then f  may not be  
continuous. (5%) 

 
 
5. Suppose that f is a continuous real-valued function on [0,1]  satisfying  

1

0
( ) 0nf x x dx =∫  for all .   0,1, 2,n = ⋅⋅⋅

Prove that  on [0 . (20%) ( ) 0f x ≡ ,1]

 


