	大學105學年度 ^{組別:<u>甲組選考</u>}		
☆☆請在答案紙上作答☆			共 1頁,第1頁
1 . (16%) Let \mathbb{R} be the field of	Freal numbers and $F = \begin{cases} a \\ -b \end{cases}$	$\begin{bmatrix} b \\ a \end{bmatrix} \mid a, b \in \mathbb{R} \bigg\}.$	
	n group under the usual matrix der the usual matrix addition a answer.		
2 . (12%) Suppose that <i>G</i> is a figroup.	inite group of order <i>p</i> , where <i>p</i>	is a prime number. Pr	ove that G is a cyclic
3 . (12%) Suppose that <i>G</i> is an a that A_n is a subgroup of <i>G</i> .		positive integer. Let	$A_n = \{a^n \mid a \in G\}$. Prove
4. (12%) Let <i>R</i> be a ring such that $a + a = 0$ for all $a \in R$.	that $a^2 = a$ for all $a \in R$. Pr	ove that <i>R</i> is a commu	tative ring and
5 . (12%) Let <i>G</i> be a group and	$a, g \in G$. Prove that $\left g^{-1}ag\right $	= a . Here $ x $ is the	order of x in G .
6. (12%) Prove that if $N \triangleleft G$ ($N \cap H \triangleleft H$.	(i.e. <i>N</i> is a normal subgroup of	f G) and H is any subg	roup of G then
7. (12%) Denote the center of a	a group G by $Z(G)$. Suppose	G/Z(G) is cyclic. St	now that G is abelian.
8. (12%) Let <i>H</i> be a subgroup of <i>G</i> . Deduce then	of G. Suppose the index $[G: A_n]$ is a normal subgroup of		n <i>H</i> is a normal