國立彰化師範大學 98 學年度博士班招生考試試題

系所:<u>數學系</u>

科目: 線性代數

☆☆請在答案紙上作答☆☆

共1頁,第1頁

- 1. Let $A = \begin{pmatrix} 2 & 6 \\ 6 & -3 \end{pmatrix}$. Find an orthogonal matrix *C* such that $C^{-1}AC$ is diagonal. (20%)
- 2. Let A be an $n \times n$ matrix over a field F, that is, $A \in M_n(F)$. Prove that A is invertible if and only if AB = I for some $B \in M_n(F)$, where I is the identity matrix. (15%)
- 3. If T:V→W is a linear mapping and N is the kernel of T. Prove that
 (a) T⁻¹({Tx}) = x + N, for all x ∈ V; (10%)
 (b) V/N ≅ T(V), via the mapping x+N→Tx. (10%)
- 4. Let A be a complex n×n matrix such that A³ 2A² A 6I = 0, where I is the identity matrix.
 (a) Determine whether A is invertible or not. Explain the reason. (10%)
 (b) Determine whether A is diagonalizable or not. Explain the reason. (10%)
- 5. (a) Let A and B be two complex $n \times n$ matrices. Show that λ is an eigenvalue of AB if and only if λ is an eigenvalue of BA. (10%)
 - (b) Let A and B be two complex $n \times n$ matrices such that AB = BA. Show that A and B have at least one eigenvector in common. That is, there is a $n \times 1$ vector \vec{v} such that \vec{v} is not only an eigenvector of A but also an eigenvector of B. (10%)
- 6. Let V be a finite-dimensional complex vector space and $T: V \rightarrow V$ a linear transformation. Suppose that W is a subspace of V. Show that there is a nonzero complex polynomial

 $f(x) = \sum_{i=0}^{k} a_i x^i$ such that $f(T)W \subseteq W$, where $f(T) = a_k T^k + a_{k-1} T^{k-1} + \dots + a_1 T + a_0 I$ and I is the identity transformation on V. (5%)