國立彰化師範大學96學年度博士班招生考試試題

系所: 數學系 科目: 線性代數 ☆☆請在答案紙上作答☆☆ 共1頁,第1頁

1. Let $M_{3\times 3}(R)$ be the set of all 3×3 real matrices.

Let $T: M_{3\times 3}(R) \to M_{3\times 3}(R)$ be the linear transformation defined by $T(A) = A^t$ for all

 $A \in M_{3\times 3}(R)$, where A^t is the transpose of A.

(a) Show that ± 1 are the only eigenvalues of A. (5%)

(b) Find all eigenspaces of A. (10%)

(c) Is T diagonalizable ? Explain the reason. (5%)

- (d) Is T invertible ? Find T^{-1} if your answer is positive. (5%)
- 2. Let V be a finite-dimensional vector space over a field F and $T: V \to V$ a linear transformation. Let R(T) denote the range space of T and N(T) the null space of T. Prove that the dimension of N(T) plus the dimension of R(T) equals the dimension of V. That is, dim $N(T) + \dim R(T) = \dim V$. (15%)
- 3. Let A and B be $n \times n$ real matrices. Show that if A is invertible, then there exists infinitely many real number α such that $A + \alpha B$ is also invertible. (12%)

4. Let T: V → V be a linear transformation on a vector space V over a field F.
Suppose that the dimension of V is n and T has n distinct eigenvalues in F.
(a) Prove that the minimal polynomial of T is also the characteristic polynomial of T. (12%)
(b) Show that there exists a v ∈ V such that v,T(v),T²(v),...,Tⁿ⁻¹(v) are linear independent

5. Let V be a n-dimensional vector space over a field F.

over F. (15%)

- (a) Show that V is isomorphic to the n-tuples space $F^n = \{(a_1, a_2, ..., a_n) \mid a_1, a_2, ..., a_n \in F\}$. (6%)
- (b) Show that if F is a finite field with q elements, then the number of different bases of V over F is $(q^n 1)(q^n q)(q^n q^2)\cdots(q^n q^{n-1})$. (15%)