國立彰化師範大學104學年度 <u>博士班</u> 招生考試試題							
系所: _	數學系	組別:乙組(統計組)	科目:	充計學			
☆☆請在谷	答案紙上作答☆☆		共2頁,	第1頁			
1. Let X_1, X	x_2, \dots, x_n be a random	sample with the following probabil	ty density function				
$f(x \mid \theta) = \theta x^{-(\theta+1)}, x > 1, \theta > 0.$							
Suppose that $\tau(\theta) = \frac{1}{\theta}$ is a function of θ .							
(a) Find the maximum likelihood estimator (MLE) of $\tau(\theta)$. (10%)							
(b) Show that the answer in (a) is an unbiased estimator of $\tau(\theta)$. (10%)							
(c) Is the answer in (a) an uniformly minimum variance unbiased estimator (UMVUE) of $\tau(\theta)$?							
Justify your answer. (10%)							
2. For a comparative study of two treatments A and B, treatment A is applied to the n units and treatment							
B to the other m units, where the response measurements for treatment A and treatment B are							
respectively recorded as X_{11}, \ldots, X_{1n} and X_{21}, \ldots, X_{2m} . These data constitute independent random samples							
from two populations. We wish to test the null hypothesis H_0 : A and B populations are identical versus							
the alternative hypothesis H_1 : Population A is shifted from population B toward larger values. Please							
give a reasonable statistical method to solve this problem. (20%)							
3. Please cle	arly describe the defin	nition of a receiver operating chara	cteristic (ROC) curve for	a binary			
classifier. In addition, please plot a ROC curve with specifying the X-axis and Y-axis labels for							
illustration. (20%)							

國立彰化師範大學104學年度 <u>博士班</u> 招生考試試題								
系所:	<u> 數學系</u>	組別:乙組(統計組)	科目: 統計學					
☆☆請存	E答案紙上作答☆☆		共2頁,第2頁					
4. Conside	er the following models:							
Model 1: simple logistic regression $\ln \frac{p}{1-p} = \beta_0 + \beta_1 x$,								
Model 2: simple linear regression $y = \beta_0 + \beta_1 x + \varepsilon$,								
where	p is the expectation of a	binary response, y is the continuous r	response and $\varepsilon \sim^{iid} N(0, \sigma^2)$.					
(a) What	at are the differences betw	een Model 1 and 2? And why Model 1	does not have the error term ε					
like	that in the model 2? (10%)						

(b) The following table shows the outputs of the simple logistic regression Model 1 for the sample size

n=24:

Analysis of Maximum Likelihood Estimates								
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq			
Intercept	1	-4.4449	1.8432	5.8156	0.0159			
x	1	1.9244	0.9116	4.4568	0.0348			

Please calculate and interpret exp(β₁), and calculate the 95% confidence limits for exp(β₁). (12%)
(c) Based on the above table, please test the null hypothesis H₀: β₁ = 0, and write down the alternative hypothesis, the test used, and your conclusion using a 5% level of significance. (8%)

Note:
$$Z_{0.95} = 1.645$$
; $Z_{0.975} = 1.96$
 $\chi^2_{1,0.95} = 3.841$; $\chi^2_{2,0.95} = 5.991$; $\chi^2_{3,0.95} = 7.815$; $\chi^2_{4,0.95} = 9.488$
 $\chi^2_{1,0.975} = 5.024$; $\chi^2_{2,0.975} = 7.378$; $\chi^2_{3,0.975} = 9.348$; $\chi^2_{4,0.975} = 11.143$