國立彰化師範大學100學年度博士班招生考試試題

系所:<u>科學教育研究所</u> 組別:<u>丙</u> ☆☆請在答案紙上作答☆☆ 科目:基礎化學(含無機、物化)

第1頁,共3頁

I. Answer the following questions [70%]

Note: (1) Must show detailed calculation processes in your answer.

(2) The calculation results might be ignored if calculator is prohibited.

- 1. Consider manganese, whose electron configuration is $[Ar]4s^23d^5$. When the Mn^{2+} ion is formed, we might expect the two electrons to be removed from the 3d orbitals to yield $[Ar]4s^23d^3$. Is it true? If it is wrong, what is the correct electron configuration and why? (5%)
- 2. In general, ionization energy increases from left to right across a given period. Aluminum, however, has lower ionization energy than magnesium. Explain. (5%)
- 3. Alkali metals have a greater affinity for electrons than alkaline earth metals. Explain. (5%)
- 4. The wave function for the 1s orbital in the hydrogen atom is $\Psi_{1s} = \frac{1}{\sqrt{\pi}}e^{-r}$, where r is the value of the radius of the Bohr orbit radius as equal to 0.0529 nm. Derive that the distance of as from

the radius of the Bohr orbit radius a_0 , equal to 0.0529 nm. Derive that the distance of a_0 from nucleus has the maximum of Radial probability. (5%)

- 5. Write Lewis structures, the geometry of molecule and hybridization of central atom of the H_2O , SF_4 and XeF_4 . (18%)
- 6. A 74.6-g ice cube floats in the Arctic Sea. The temperature and pressure of the system and surroundings are at 1 atm and 0°C. Calculate ΔS_{sys} , ΔS_{surr} , and ΔS_{univ} for the melting of the ice cube. (12%)
- 7. Based on the following standard reduction potentials:

 $\begin{aligned} & \operatorname{Fe}^{2^{+}}_{(aq)} + 2e^{-} \to \operatorname{Fe}_{(s)} & \operatorname{E_{1}}^{o} = -0.44 \text{ V} \\ & \operatorname{Fe}^{3^{+}}_{(aq)} + e^{-} \to \operatorname{Fe}^{2^{+}}_{(aq)} & \operatorname{E_{2}}^{o} = 0.77 \text{ V} \\ & \text{Calculate the standard reduction potential for the half reaction } \operatorname{Fe}^{3^{+}}_{(aq)} + 3e^{-} \to \operatorname{Fe}_{(s)} (5\%) \end{aligned}$

- 8. The half-life of Rn-222 is 3.8 days. Starting with the radioactivity level of 10 pC due to Rn-222, how long is it before the radioactivity level decreases to 4 pC, the up-limit value recommended by EPA? (pC means 3.70×10^{-2} disintegrations of radioactive nuclei per second.) (5%)
- 9. Calculate the molar solubility of AgCl (A) in water and (B) in a 1.0 M NH₃ solution. ($K_{sp} = 1.6 \times 10^{-10}$ for AgCl, $K_f = 1.5 \times 10^7$ for Ag(NH₃)₂⁺) (10%)

國立彰化師範大學 100 學年度 博士班 招生考試試題

系所: <u>科學教育研究所</u>	科目: <u>基礎化學(含無機、物化</u>
組別:丙 ☆☆請在答案紙上作答☆☆	第2頁,共3頁
II. Multiple choice questions (cho	ose only one answer) [30%]
1. The ion $[Co(NH_3)_6]^{2+}$ is octahed	ral and high spin. This complex is
(A) diamagnetic.	(D) paramagnetic, with 1 unpaired electron.
(B) paramagnetic, with 5 unpai	red electrons. (E) paramagnetic, with 3 unpaired electrons.
(C) paramagnetic, with 4 unpai	red electrons.
2. The systematic name for the con	pound represented below is
CH ₃ -CH ₂ -CH ₂ -CH-CH-CH ₃	
ĊH ₂	
CH ₂ –CH ₃	
(A) 3-methyl-4-propylheptane	(D) 4,5-diethylheptane
(B) 3-propyl-4-ethylhexane	(E) 2-ethyl-4-propylhexan
(C) 3-ethyl-4-propylhexane	
3. The intermolecular force betw	een bases on the opposite strands of DNA responsible for its
double-helical structure is	
(A) ionic force.	(D) dispersion force.
(B) dipole-dipole force.	(E) hydrogen bonding.
(C) covalent bonding.	
4. Which choice contains all three	nolecular units found in nucleotides?
(A) phosphate, sugar, amino acio	(D) amino acid, nitrogen-containing base, sugar
(B) carboxylic acid, sugar, prote	in (E) sugar, amino acid, protein
(C) phosphate, nitrogen-contain	ng base, sugar
5. Which of the following stateme	ents about the binding of oxygen to deoxyhemoglobin is correct?
(A) The binding of oxygen to Fe	²⁺ in the first heme pushes the iron ion out of the porphyrin ring,
decreasing the affinity for t	he second oxygen.
(B) The binding of oxygen to Fe	²⁺ in the first heme pulls the iron ion into the porphyrin ring,
increasing the affinity for the	e second oxygen.
(C) The binding of oxygen to Fe	²⁺ in the first heme pulls the iron ion into the porphyrin ring,
decreasing the affinity for t	he second oxygen.
(D) The binding of oxygen to Fe	²⁺ in the first heme pushes the iron ion out of the porphyrin ring,
increasing the affinity for the	e second oxygen.
6. Ammonia reacts with diatomic of	xygen to form nitric oxide and water vapor:
$4NH_3 + 5O_2 \rightarrow 4NO + 6H_2O$	
When 40.0 g NH ₃ and 50.0 g C (A) NH (B) (C) (C)	$_2$ are allowed to react, which is the limiting reagent?
(A) NH_3 (B) O_2 (C) NC	(D) H_2O (E) No reagent is limiting.

國立彰化師範大學100學年度博士班招生考試試題

系所: 科學教育研究所 科目:基礎化學(含無機、物化) 組別: 丙 第3頁,共3頁 ☆☆請在答案紙上作答☆☆ 7. The first step in the Ostwald process for producing nitric acid is $4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(g)$ If the reaction of 150.0 g of ammonia with 150.0 g of oxygen gas yields 87.0 g of nitric oxide (NO), what is the percent yield of this reaction? (B) 49% (C) 77% (A) 100% (D) 33% (E) 62% 8. Which of the following compounds is a strong electrolyte? $(A) H_2O$ (B) CH₃OH $(C) C_6 H_6$ (D) HF (E) NaCl 9. The oxidation number of N in NaNO₃ is (B) +5 (A) + 6(C) + 3(D) - 3(E) None of the above. 10. 35.0 mL of 0.255 M nitric acid is added to 45.0 mL of 0.328 M Mg(NO₃)₂. What is the concentration of nitrate ion in the final solution? (A) 0.481 M (B) 0.296 M (C) 0.854 M (D) 1.10 M

Useful Information: http://www.qdm.ks.edu.tw/wakiki/chem/chm.htm

