國立彰化師範大學105學年度碩士班招生考試試題

系所:	化學系			科目:	機化學與分析化學	
☆☆請	在答案紙上作答	***			共2頁,第1頁	
I、無相	幾化學 (50%)	I				
一、選	擇題 (30%)		10			
1.	Which of the fol	llowing is an ionic	compound?			
2	(A) H_2S	$(\mathbf{B}) \mathbf{N}\mathbf{H}_3$	$(C) I_2$		(E) CCI_4	
2.	(A) $Mg(s) + Cl_2$	gy of MgCl ₂ is the $(g) \rightarrow \text{MgCl}_2(s)$	energy change for	which one of the f	ollowing processes?	
	(B) $Mg(g) + 2Cl(g) \rightarrow MgCl_2(s)$					
	(C) $\operatorname{Mg}^{2+}(s) + 2\operatorname{Cl}^{-}(g) \to \operatorname{MgCl}_2(g)$					
	(D) $\operatorname{Mg}^{2+}(g) + 2\operatorname{Cl}^{-}(g) \rightarrow \operatorname{MgCl}_2(s)$					
	(E) $MgCl_2(aq)$ ·	\rightarrow MgCl ₂ (s)				
3.	According to VSEPR theory, a molecule with the general formula AX4E2 will have a molecular shape.					
	(A) tetrahedral		(B) square pyramidal		(C) square planar	
	(D) octahedral		(E) seesaw			
4.	Which one of the following molecules does not have a dipole moment?					
	(A) CS ₂	(B) H ₂ S	(C) CH_2Cl_2	(D) PH ₃	(E) CH_2O	
5.	The ground state electron configuration of Cr^{2+} is					
	(A) $[Ar]4s^{1}3d^{5}$	(B) $[Ar]4s^23d^4$	(C) [Ar]3d ⁴	(D) $[Ar]4s^{1}3d^{3}$	(E) $4s^2 3d^2$	
6.	Which of the following will be diamagnetic?					
	(A) Ni ²⁺	(B) Cr^{2+}	(C) Mn^{2+}	(D) Co ³⁺	(E) Ti ⁴⁺	
7.	Which of the following species could exist as isomers?					
	(A) $[Co(H_2O)_4C]$	$l_2]^+$	(B) $[Pt(NH_3)Br_3]$	3]_	(C) $[Pt(en)Cl_2]$	
	(D) $[Pt(NH_3)_3Cl]^+$		(E) none of these choices is correct			
8.	Which of the following will have the highest boiling point?					
	(A) O ₂	(B) Cl ₂	(C) Br ₂	(D) I ₂	(E) Xe	
9.	What elements are alloyed to make stainless steel?					
	(A) Fe and C		(B) Fe and Mn		(C) Fe and Ni	
	(D) Fe and Cr		(E) Fe, Cr and N	Ji		
10.	. Select the eleme	ent with the lowest	first ionization en	ergy.		
	(A) Se	(B) S	(C) Sn	(D) Sr	(E) H	

國立彰化師範大學105學年度碩士班招生考試試題

系所: <u>化學系</u>	科目:					
☆☆請在答案紙上作答☆☆	共2頁,第2頁					
二、簡答題 (20%)						
1. Explain what is meant by the term "bond order" and describe how it can be calculated using the						
information in a molecular orbital energy level diagram. (5%)						
2. Draw all important resonance structures of the nitrate ion, $NO_3^-(5\%)$						
3. What is Heisenberg's uncertainty principle? Using formula to describe it. (5%)						
4. Give Lewis dot structure and sketch the shapes of $ICl_2^{-}(5\%)$						
II、分析化學 (50%)						
一、簡答與計算題 (50%)						

- 1. A 0.50 M solution of a base is 8.0% hydrolyzed, find its K_b . (10%)
- 2. Calculate the pH of a solution that contains :
 - (a) 0.70 M H_3PO_4 and 0.65 M $NaH_2PO_4.$ (5%)

(for H₃PO₄ :
$$K_{a1} = 7.11 \times 10^{-3}$$
, $K_{a2} = 6.32 \times 10^{-8}$, $K_{a3} = 4.50 \times 10^{-13}$)

(b) 0.40 M Na₂CO₃ and 0.50 M NaHCO₃. (5%)

(for H_2CO_3 : $K_{a1} = 4.45 \times 10^{-7}$, $K_{a2} = 4.69 \times 10^{-11}$)

- 3. The following chromatogram is obtained from an HPLC separation,
 - (a) How can you determine the number of plates (N) for the major peak? (5%)
 - (b) If the column has a length of L, how can you determine the plate height (H)? (5%)

4. How would you prepare 1.0 L of the following solution :

0.08 M H₂SO₄ from a reagent that has a density of 1.164 g/mL and is 20.9% H₂SO₄ (w/w)? (5%)
5. The Mg in a 0.80 g sample of stomach medicine was titrated with 27.50 mL of 0.02 M EDTA. Calculate the percent (w/w) Mg in this sample. (Mg = 24.305) (5%)

6. Derive the Nernst equations for the following half-cell reactions :

(a)
$$MnO_4^- + 5e_7 + 8H^+ rac{1}{5} Mn^{2+} + 4H_2O(5\%)$$

(b) $2H^+ + 2e$ - $rac{l}{2}H_{2(g)}(5\%)$