國立彰化師範大學104學年度碩士班招生考試試題

系所: 化學系

科目: 無機化學與分析化學

☆☆請在答案紙上作答☆☆

共2頁,第1頁

I. (分析部分,50分)

Answer the following questions

- (a) What is the molar concentration of K^+ in a solution that contains 63.3 ppm of $K_3Fe(CN)_6$ 1. (FW 329.3 g/mol)? (5%)
 - (b) Calculate the analytical and equilibrium molar concentrations of the solute species in an aqueous solution that contains 285 mg of trichloroacetic acid (MW 163.4 g/mol), in 10.0 mL (the acid is 73% ionized in water). (10%)
- The solubility product Ksp for the silver salt AgX is 4.0 (±0.4) × 10⁻⁸, and the molar solubility is 2.0 × 10⁻⁴ M, solubility = $(Ksp)^{1/2} = (4.0 \times 10^{-8})^{1/2} = 2.0 \times 10^{-4}$ M, What is **the uncertainty** in the 2. calculated solubility of AgX? (5%)
- 3. (a) Name three types of systematic errors. (b) Describe the ways to detect systematic errors.(10%)
- The standard addition method was used in the determination of phosphate by the molybdenum blue 4. method. A 2.00 mL urine sample was treated with molybdenum blue reagents to produce a species absorbing at 820 nm, after which the sample was diluted to 100.00 mL. A 25.00 mL aliquot gave an instrument reading of 0.428. Addition of 1.00 mL of a solution containing 0.0500 mg of phosphate to a second 25.0 mL aliquot gave an absorbance of 0.517. Use these data to calculate the concentration of phosphate in milligrams per mL of the sample. Assume that there is a linear relationship between absorbance and concentration and that a blank measurement has been made.

(5%)

(5%)

- List general properties of activity coefficients. 5.
- 6. Which has the greater buffer capacity: (a) a mixture containing 0.100 mol of NH_3 and 0.200 mol of NH₄Cl or (b) a mixture containing 0.0500 mol of NH₃ and 0.100 mol of NH₄Cl? Explain your answer. (5%)
 - Ka for NH_4^+ is 5.7×10^{-10}
- Sulfide ion forms precipitates with heavy metal cations that have solubility products that vary from 7. 10^{-10} to 10^{-90} or smaller. In addition, the concentration of S²⁻ can be varied over a range of about 0.1 M to 10^{-22} M by controlling the pH of a saturated solution of hydrogen sulfide. These two properties make possible a number of useful cation separations. For example, cadmium sulfide is less soluble than thallium(I) sulfide. Find the $[H_3O^+]$ conditions under which Cd^{2+} and Tl^+ can, in theory, be separated quantitatively with H₂S from a solution that is 0.1 M in each cations. (5%)

 K_{sp} for CdS is 1×10^{-27} , K_{sp} for Tl₂S is 6×10^{-22} K_1 for H_2S is 9.6×10^{-8} , K_2 for H_2S is 1.3×10^{-14}

國立彰化師範大學104學年度項士班招生考試試題

余)	所: <u>化學系</u>	科目: 無機化學與分析化	孝
☆☆請在答案紙上作答☆☆ 共2頁,第2頁			
II.	(無機部分,50分)		
1.	Calculate the spin-only magnetic moment for the following (a) Ti^{2+}	g ions	(6%)
	(b) Cr^{2+}		
2.	Draw the facial and meridional isomers of [Co(NH ₃) ₃ Cl ₃]		(4%)
3.	Explain the effect on the d orbital energies when an octahed along the z axis.	dral complex is compressed or elong	gated (7%)
4.	Is the reaction of $[Co(NH_3)_6]^{3+} + [Cr(H_2O)_6]^{2+}$ likely to pro- mechanism? Explain your answer.	oceed via an inner-sphere or outer-sp	ohere (6%)
5.	Construct the molecular orbital diagram of O ₂ and predict it	its magnetic properties.	(6%)
6.	Determine the point group of the following compounds		(6%)
	(a) C ₂ H ₄ (ethylene)		
	(b) C_6H_6 (benzene)		
	(c) H_2O		
7.	Give Lewis structures and sketch the shapes for the following	ing	(9%)
	(a) SF ₆		
	(b) SeF ₄		
	(c) ICl ₃		
8.	Using Crystal Field Theory to sketch the metal d orbital spl	litting for	(6%)
	(a) trigonal bipyramidal		
	(b) square planar complexes.		