國立彰化師範大學101學年度碩士班招生考試試題

系所:<u>化學系</u>

科目: 無機化學與分析化學

☆☆請在答案卷上作答☆☆

共1頁,第1頁

I. 無機化學部分(50%)

- The ¹H NMR spectrum of (C₅H₅)₂Fe(CO)₂ shows two peaks of equal area at room temperature but has four resonances of relative intensity 5:2:2:1 at low temperature. Explain this phenomenon in detail. (6%)
- 2. Why are there two separate water exchange rates for $[Cu(H_2O)_6]^{2+}$ in aqueous solution? (6%)
- 3. Determine the ground terms for the following configurations (a) d^4 , *Td* symmetry (b) d^8 , *Oh* symmetry. (6%)
- 4. What are the possible magnetic moments of Co(II) in tetrahedral and octahedral complexes. (6%)
- 5. The triiodide ion, I_3^- is linear, but I_3^+ is bent. Explain. (6%)
- The ion NO⁻ can react with H⁺ to form a chemical bond. Which structure is more likely, HON or HNO? Explain. (6%)
- Determine the point group for (a) 1, 3, 5-tribromobenzene (b) cyclohexane, chair form (c) diborane, B₂H₆. (6%)
- 8. Draw the resonance structures for isoelectronic ions NSO⁻ and SNO⁻, and assign formal charges. (8%)

II. 分析化學(50%)

- 1. A 0.050 M solution of HA is 1.5% dissociated. Calculate pKa for this acid. (10%)
- A buffer was prepared by dissolving 0.80 mol of the weak acid HA (Ka = 1.00 x 10⁻⁵) plus 0.20 mol of its conjugate base Na⁺A⁻ in 0.50 L. Find the pH. (10%)

3. Calculate the ionic strength of : (10%) (a) 0.08 M H₂SO₄ plus 0.01 M Na₂SO₄ (b) 0.5 mM MgHPO₄ plus 10.0 mM NaCl

4. Which compound has higher relative intensity of fluorescence and why? (10%) (a) C₆H₅NH₂ or C₆H₅NH₃⁺ (b) C₆H₆ or C₆H₅I

5. What resolution is required in order to resolve the following compounds using mass spectrometry? (10%)

(a) molecules $C_3H_5N_3$ (M = 83.0484) and C_2HN_3O (M = 83.0120)

(b) ions $C_2H_4^+$ (M = 28.0313) and CO^+ (M = 27.9949)