國立彰化師範大學100學年度碩士班招生考試試題

系所:<u>化學系</u>

科目: 無機化學與分析化學

☆☆請在答案紙上作答☆☆

共2頁,第1頁

第一部分: 無機與分析化學 (無機部份, 共 50 分)

- 1. Give Lewis dot structures and sketch the shapes of (a) ICl_2^{-} (b) $ClOF_4^{-}$ (8%)
- 2. Determine the point groups for (a) ethylene (b) acetylene (6%)
- 3. On the basis of molecular orbitals, predict the shortest bond lengths of O_2^- , O_2 and O_2^+ . Give your explanation. (6%)
- 4. Sketch all isomers of $[Pt(en)_2Cl_2]^{2+}$, where en = ethylenediamine. (6%)
- 5. Predict the number of unpaired electrons for (a) $Co(H_2O)_6]^{2+}$ (b) a square-planar d^7 ion (6%)
- 6. Determine the ground terms for (a) high spin and low spin d^5 (*Oh* symmetry) (b) d^4 (*Td* symmetry) (6%)
- 7. Determine the valance electron counts for the transition metals in the following complexes (a) $[Fe(CO)_4]^{2^-}$ (b) $(\eta^3-C_3H_5)(\eta^5-C_5H_5)Fe(CO)$. (6%)
- 8. N₂ has molecular orbitals rather similar to those of CO, would you expect N₂ to be a stronger or weaker π acceptor than CO? (6%)
- 第二部分:無機與分析化學(分析部分,共50分)
- The contents of mercury in the SRM soil sample measured by ICP-MS are 3.17, 3.19, 3.21, 3.19, 3.17 and 3.21 ppm. You are developing a label-free nanoparticle based optic-sensor for determination of Hg²⁺ ions. The measured values are 3.29, 3.22, 3.30, 3.01 and 3.23 ppm, respectively. Does your answer differ significantly from the answer by ICP-MS at the 95% confidence level? (15%)
- Soil sample containing Pb²⁺ ions gave a signal of 4.27 mV in an atomic emission analysis. Then 5.00 mL of 2.08 M Pb²⁺ ions were added to 95.0 mL of soil sample. This spiked soil sample gave a signal of 6.50 mV. Find [Pb²⁺] in the original soil sample. (5%)
- 3. Consider a saturated solution of SrSO₄ in which following reactions are considered:

$$SrSO_{4(s)} \leftrightarrows Sr^{2+}_{(aq)} + SO_4^{2-}_{(aq)}$$
 (K_{sp} = 3.2 x 10⁻⁷)

$$SO_4^{2-}(aq) + H_2O \leftrightarrows HSO_4^{-}(aq) + OH^{-}(aq)$$
 (K_b = 9.8 x 10⁻¹³)

Find the concentration of $\text{Sr}^{2+}_{(aq)}$ in the solution if the pH is fixed at 2.50. (Assume [H₂SO₄] = 0). (10%)

4. In 298 K, Given:

 $2IO_{3}^{-} + I^{-} + 12H^{+} + 10 e^{-} \leftrightarrows I_{3}^{-} + 6 H_{2}O \qquad (E^{\circ} = 1.210 V)$ $I_{3}^{-} + 2e^{-} \leftrightarrows 3I^{-} \qquad (E^{\circ} = 0.535 V)$

- (1) Write the balanced reaction of IO_3^- and I^- producing I_3^- in acidic solution. (5%)
- (2) Calculate E° , ΔG° , and K for the balanced reaction. (9%)
- (3) Calculate E and ΔG if the solution $[IO_3^-]=0.010$ M, $[I^-]=0.010$ M, $[I_3^-]=1.0 \times 10^{-4}$ M, and buffered at pH 6. (6%)

國立彰化師範大學100學年度碩士班招生考試試題

系所:<u>化學系</u>

科目: _ 無機化學與分析化學_

☆☆請在答案紙上作答☆☆

共2頁,第2頁

Useful information:

$$\begin{split} G_{exp} &= \frac{|questionable \ value \ -\bar{x}|}{s} \ , \ F_{exp} \ = \frac{S_1^2}{S_2^2} \ , \ v = \begin{cases} \frac{\left(s_1^2/n_1 + s_2^2/n_2\right)^2}{\left(\frac{s_1^2/n_1\right)^2 \ \left(s_2^2/n_2\right)^2}{n_1 + 1}\right)^2} \\ \frac{\left(s_1^2/n_1\right)^2 \ \left(s_2^2/n_2\right)^2}{n_1 + 1} \\ \frac{\left(s_1^2/n_1\right)^2 \ \left(s_2^2/n_2\right)^2}{n_2 + 1} \end{cases} - 2 \\ t_{(exp)} &= \frac{\left|\frac{\bar{x} - \mu}{s}\right|}{s} \ , \ t_{(exp)} = \frac{\left|\frac{\bar{x}_1 - \bar{x}_2\right|}{s_p} \ \sqrt{\frac{n_1 n_2}{n_1 + n_2}} \ , \ t_{(exp)} = \frac{\left|\frac{\bar{x}_1 - \bar{x}_2\right|}{\sqrt{s_1^2/n_1 + s_2^2/n_2}} \\ S_p &= \sqrt{\frac{s_1^2(n_1 - 1) + s_2^2(n_2 - 1)}{n_1 + n_2 - 2}} \end{split}$$

Number of	G		Confidence level (%)								
absorvations	(05% confidence)	Degrees of freedom	50	90	95	98	99	99.5	99.9		
observations	(95% confidence)	1	1.000	6.314	12.706	31.821	63.656	127.321	636.578		
4	1.462	2	0.816	2.920	4.303	6.965	9.925	14.089	31.598		
4	1.463	3	0.765	2.353	3.182	4.541	5.841	7.453	12.924		
5	1.672	4	0.741	2.132	2.776	3.747	4.604	5.598	8.610		
6	1.922	5	0.727	2.015	2.571	3.365	4.032	4.773	6.869		
0	1.822	6	0.718	1.943	2.447	3.143	3.707	4.317	5.959		
7	1.938	7	0.711	1.895	2.365	2.998	3.500	4.029	5.408		
0	2.022	8	0.706	1.860	2.306	2.896	3.355	3.832	5.041		
8	2.032	9	0.703	1.833	2.262	2.821	3.250	3.690	4.781		
9	2.110	10	0.700	1.812	2.228	2.764	3.169	3.581	4.587		
10	2.176	15	0.691	1.753	2.131	2.602	2.947	3.252	4.073		
10	2.170	20	0.687	1.725	2.086	2.528	2.845	3.153	3.850		
11	2.234	25	0.684	1.708	2.060	2.485	2.787	3.078	3.725		
10	2 295	30	0.683	1.697	2.042	2.457	2.750	3.030	3.646		
12	2.283	40	0.681	1.684	2.021	2.423	2.704	2.971	3.551		
15	2.409	60	0.679	1.671	2.000	2.390	2.660	2.915	3.460		
20	2 5 5 7	120	0.677	1.658	1.980	2.358	2.617	2.860	3.373		
20	2.557	00	0.674	1.645	1.960	2.326	2.576	2.807	3.291		

Degrees of freedom for s ₂	Degrees of freedom for s ₁													
	2	3	4	5	6	7	8	9	10	12	15	20	30	00
2	19.0	19.2	19.2	19.3	19.3	19.4	19.4	19.4	19.4	19.4	19.4	19.4	19.5	19.5
3	9.55	9.28	9.12	9.01	8.94	8.89	8.84	8.81	8.79	8.74	8.70	8.66	8.62	8.53
4	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.91	5.86	5.80	5.75	5.63
5	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.68	4.62	4.56	4.50	4.36
6	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	4.00	3.94	3.87	3.81	3.67
7	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.58	3.51	3.44	3.38	3.23
8	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.28	3.22	3.15	3.08	2.93
9	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	3.07	3.01	2.94	2.86	2.71
10	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.91	2.84	2.77	2.70	2.54
11	3.98	3.59	3.36	3.20	3.10	3.01	2.95	2.90	2.85	2.79	2.72	2.65	2.57	2.40
12	3.88	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75	2.69	2.62	2.54	2.47	2.30
13	3.81	3.41	3.18	3.02	2.92	2.83	2.77	2.71	2.67	2.60	2.53	2.46	2.38	2.21
14	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60	2.53	2.46	2.39	2.31	2.13
15	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.48	2.40	2.33	2.25	2.07
16	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49	2.42	2.35	2.28	2.19	2.01
17	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45	2.38	2.31	2.23	2.15	1.96
18	3.56	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41	2.34	2.27	2.19	2.11	1.92
19	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	2.38	2.31	2.23	2.16	2.07	1.88
20	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35	2.28	2.20	2.12	2.04	1.84
30	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21	2.16	2.09	2.01	1.93	1.84	1.62
œ	3.00	2.60	2.37	2.21	2.10	2.01	1.94	1.88	1.83	1.75	1.67	1.57	1.46	1.00