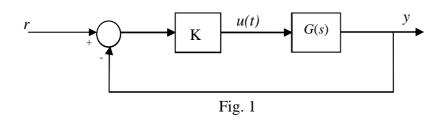
國立彰化師範大學 97 學年度碩士班招生考試試題


系所:_工業教育與技術學系碩士班_ 組別:_乙組_ 科目:自動控制_

☆☆請在答案紙上作答☆☆

共3頁,第1頁

1. A unity feedback control system is shown in Fig. 1, where $G(s) = \frac{100}{s(\frac{s}{10} + 1)(\frac{s}{100} + 1)}$ and K is the

gain of proportional controller.

- (1) Draw the Bode plot for G(jw) assuming K = 1. (5%)
- (2) Is the system stable for K = 1? Why? (5%)
- (3) Find GM(gain margin) and PM(phase margin) from the Bode plot in (1) (7%)
- (4) Draw the Nyquist plot for G(s) and determine the range of K to ensure the stability of system. (8%)
- 2. A control system is shown in Fig. 2. The moments of inertia of gears are lumped as J_1 , J_2 , and J_3 . T(t) is the applied torque; N_1, N_2 , N_3 , and N_4 are the number of gear teeth. Please find the following (assume rigid shafts):
 - (1) G(s)=X(s)/T(s). (5%)
 - (2) Damping ratio ζ . (3%)
 - (3) Rising time. (3%)
 - (4) Peak time. (3%)
 - (5) Overshooting Max. (3%)
 - (6) Steady-state error for a unit-step function. (8%)

Where M = 1kg, K = 1N/m, B = 1N-s/m (Columb friction coefficient), $N_1 = 60$, $N_2 = 30$, $N_3 = 50$, $N_4 = 40$ and $J = J_1 = J_2 = J_3 = 1 \ kg - m^2$.

國立彰化師範大學 97 學年度碩士班招生考試試題

系所: 工業教育與技術學系碩士班 組別: 乙組 科目:自動控制

☆☆請在答案紙上作答☆☆

共3頁,第2頁

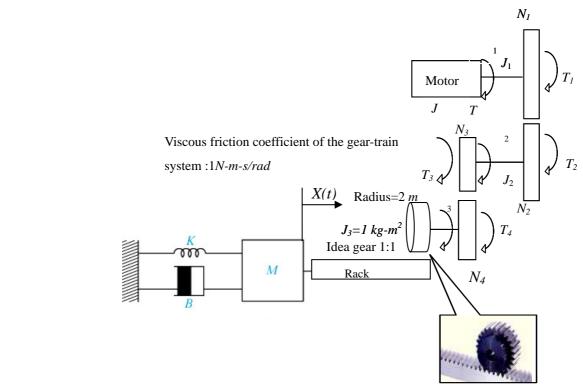


Fig. 2

3. Consider a system $\mathcal{L} = Ax + Bu$, y = Cx,

where
$$A = \begin{bmatrix} -\frac{3}{4} & -\frac{1}{4} \\ -\frac{1}{2} & -\frac{1}{2} \end{bmatrix}$$
, $B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $C = \begin{bmatrix} 4 & 2 \end{bmatrix}$

- (1) Find the eigenvalues of A.(3%)
- (2) Find the eigenvectors of A.(3%)
- (3) Find the state transition matrix. (4%)
- (4) Is the system state controllable? (3%)
- (5) Is the system observable? (3%)
- (6) Find the transfer function $\frac{Y(s)}{U(s)}$. (4%)

國立彰化師範大學 97 學年度碩士班招生考試試題

系所: 工業教育與技術學系碩士班 組別: 乙組 科目: 自動控制

☆☆請在答案紙上作答☆☆

共3頁,第3頁

4. Consider a system

$$\begin{bmatrix} \mathbf{x} \\ \mathbf{x} \\ \mathbf{x} \end{bmatrix} = \begin{bmatrix} 1 & -3 \\ 8 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$

The state feedback control is $u = -[k_1 \ k_2] \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, where k_1 and k_2 are the real constants. Sketch

and determine the region in the k_1 versus k_2 plane in which the overall system is stable. Please put k_1 as the x-axis and k_2 as the y-axis. (15%)

5. Consider a system

$$\mathcal{R} = \begin{bmatrix} 0 & 1 \\ -1 & 1 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$

The state feedback control is $u = -\begin{bmatrix} k_1 & k_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + r$, where r(t) is the unit step function.

Determine the values of k_1 and k_2 such that the closed loop system has a damping ratio $\xi=0.7071$ and the peak time $t_p=3.1416$. (15%)