國立彰化師範大學九十六學年度碩士班招生考試試題

系所:工業教育與技術學系 組別:乙組 科目:自動控制

請在答案紙上作答 +2頁 第1頁

1. The circuit diagram of a separately excited dc motor is shown in Fig. 1. Assume that the air-gap flux is $\phi(t) = k_f I_f = constant$ and the torque developed by the motor is $T_m(t) = k_m \phi(t) i_a(t) = k_t i_a(t)$, where $k_t = k_m \phi(t) = k_m k_f I_f = constant$. The motor variables and parameters are defined as follows:

Va(t): applied voltage ia(t): armature current

Eb(t): back emf $\omega_m(t)$: rotor angular velocity

Tm(t): motor torque $T_L(t)$: motor torque

 $\phi(t)$: magnetic flux in the air gap

La: armature inductance Ra: armature resistance

Jm: rotor inertia Bm: viscous-friction coefficient

kt: torque constant kb: back-emf constant

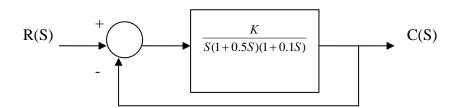



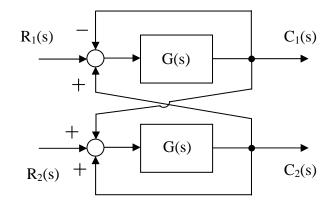
Fig. 1

- (1) Draw the block diagram of this system. (10%)
- (2) Find the transfer function $\frac{\omega_{\rm m}(s)}{V_{\rm s}(s)}$. (10%)
- 2. A negative unity feedback control system $G(s) = \frac{12(S+4)}{S(S+2)(S+3)}$. If input $r(t) = (16+2t+t^2)$, please find the steady-state error e_{ss} . (15%)
- 3. An open-loop transfer function $GH(S) = \frac{100(S+10)}{S(S+5)(S+20)}$. Please sketch bode plot of the system. (15%)
- 4. A system control block diagram shown as below:

Please find the Root Locus of this system. (20%)

國立彰化師範大學九十六學年度碩士班招生考試試題

系所:工業教育與技術學系 組別:乙組 科目:自動控制


請在答案紙上作答 共2頁 第2頁

5. Consider the following state equation and output equation.

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -3 & 2 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u$$

$$y = \begin{bmatrix} 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.$$

- (1) Find the transfer function of the system. (5%)
- (2) Check the controllability and observability. (5%)
- (3) Design a state feedback controller u(t) = -Kx(t) + r(t) such that the closed-loop system poles are $S_{p1} = -4$ and $S_{p2} = -8$. (5%)
- 6. The block diagram of the system $\begin{bmatrix} C_1(s) \\ C_2(s) \end{bmatrix} = G_M(s) \begin{bmatrix} R_1(s) \\ R_2(s) \end{bmatrix}$ is shown as below:

Please find the transfer function matrix $G_M(s)$. (15%)