系所:<u>電機工程學系</u> 科目:<u>電子學</u>

☆☆請在答案紙上作答☆☆

共4頁,第1頁

計算或推導過程須詳細寫出,否則不予計分。

1. In the circuit of Figure 1, diodes D_1 and D_2 have different cross section areas but are otherwise identical (i.e., $I_{S1} \neq I_{S2}$). Assume V_{in} to be greater than the cut-in voltage of diodes. Determine the current flowing through each diode. (10%)

Figure 1

- 2. For the circuit shown in Figure 2, the BJT is specified to have $\beta = 100$. Find:
 - a) the small-signal resistance r_e , (5%)
 - b) the input resistance $R_{\rm in}$, (5%)
 - c) the voltage gain $v_o/v_{\rm sig}$. (5%)

Figure 2

3. Consider the Widlar current source circuit shown in Figure 3. Assume Q_1 and Q_2 to be matched devices. Derive an expression for the output current I_o . (10%)

系所:<u>電機工程學系</u> 科目:<u>電子學</u>

☆☆請在答案紙上作答☆☆

共4頁,第2頁

Figure 3

- 4. The transistors in the active-loaded MOS differential amplifier of Figure 4 are characterized with the same transconductance g_m and the same output resistance r_o . Assuming $g_m r_o \gg 1$, find:
 - a) the output resistance R_o of the circuit, (10%)
 - b) the differential gain A_d . (10%)

Figure 4

系所:<u>電機工程學系</u> 科目:<u>電子學</u>

☆☆請在答案紙上作答☆☆

共4頁,第3頁

5. Figure 5 shows an op amp connected in the noninverting configuration. Find expressions for open-loop gain A, feedback factor β , the closed-loop gain V_0/V_s , the input resistance R_{in} , and the output resistance R_{out} . (25%)

Figure 5

6. Figure 6 shows an oscillator. Find expression for the output frequency f_0 . (10%)

Figure 6

系所:<u>電機工程學系</u> 科目:<u>電子學</u>

☆☆請在答案紙上作答☆☆

共4頁,第4頁

7. Figure 7 shows a filter. Find transfer functions $V_{01}(s)/V_i(s)$ and $V_{02}(s)/V_i(s)$. (10%)

Figure 7