系所:<u>電機工程學系</u> 科目:<u>電</u> ☆☆請在答案紙上作答☆☆ 第1頁,共4頁 1. Find the output voltage v_O and the current i_O for the amplifier in Figure 1. Assume the input voltage to be v_I . (10%) Figure 1 2. Derive an expression in terms of the input voltage $V_{\rm IN}$ for the output voltage $V_{\rm OUT}$ in the circuit of Figure 2. Assume the current of the diode to be $I_D = I_S e^{V_D/nV_T}$. (10%) Figure 2 3. In the circuit of Figure 3, the transistor has a β of 100. Find the input resistance $R_{\rm in}$ and the overall voltage gain $(v_o/v_{\rm sig})$. (10%) 系所: 電機工程學系 科目: 電子學 ☆☆請在答案紙上作答☆☆ 第2頁,共4頁 Figure 3 - Consider the amplifier in Figure 4, and neglect r_o . - (a) Show that the midband gain is given by $A_M = -g_m R_D / (1 + g_m R_S)$. (10%) - (b) If the amplifier is biased to operate at $I_D = 1 \text{ mA}$ and $g_m = 1 \text{ mA/V}$, evaluate the midband gain, and the value of C_S that places f_L at 10 Hz. (10%) Figure 4 系所:<u>電機工程學系</u> 科目:<u>電子學</u> ☆☆請在答案紙上作答☆☆ 第3頁,共4頁 5. Consider the differential amplifier in Figure 5. Show that if all transistors have equal transconductances g_m and equal Early voltages $|V_A|$ and are operated at an overdrive voltage V_{OV} , the gain is given by $A_d = 2(V_A/V_{OV})^2$. (10%) Figure 5 6. The open-loop gain of an amplifier is given by $$A(f) = \frac{5 \times 10^{3}}{\left(1 + j\frac{f}{10^{4}}\right)\left(1 + j\frac{f}{10^{5}}\right)^{2}}$$ Assume that the feedback factor β is not a function of frequency. - (a) Determine the value of β at which the amplifier can break into oscillation. (10%) - (b) If a phase margin of 45° is required, what should be the value of β ? (10%) - 7. It is required to design a class AB output stage in Figure 6 to deliver an average power of 16 W to an 8- Ω load. The peak output voltage is chosen to be no more than 80 percent of V_{CC} . Determine the supply voltage required, the peak current 系所: 電機工程學系 科目: 電子學 ☆☆請在答案紙上作答☆☆ 第4頁,共4頁 drawn from each supply, the total supply power, and the power-conversion efficiency. (20%) Figure 6