國立彰化師範大學 97 學年度碩士班招生考試試題

系所:<u>電機工程學系碩士班</u>

☆☆請在答案紙上作答☆☆

1. Consider the high-frequency equivalent circuit of a CS amplifier as shown in Figure 1. The transistor parameters are $g_m = 3 \text{ mA/V}$, $r_o = 15 \text{ k}\Omega$, $C_{gd} = 5 \text{ pF}$, and $C_{gs} = 50 \text{ pF}$. For $r_i = R_D = 10 \text{ k}\Omega$, find the low-frequency gain V_o/V_i , the upper 3-dB frequency f_H , and the unit-gain frequency f_t . (15%)

Figure 1

2. Use a power supply of $V_{cc} = 3$ V to design a feedback bias circuit of Figure 2 so that it can provide $I_c = 3$ mA and $V_c = V_{cc}/2$ for $\beta = 100$ and $V_{BE} = 0.7$ V. Determine the required resistance of R_B and R_c . (10%)

3. Consider the CS amplifier of Figure 3 for case of $V_{DD} = 5 \text{ V}$, $k'(W/L)_1 = 50 \ \mu\text{A}/\text{V}^2$,

 $k'(W/L)_2 = 10 \ \mu A/V^2$, and $V_{t1} = V_{t2} = 1 V$.

- (a) If $v_I = 1.5$ V, find i_{D1} and v_O . (10%)
- (b) If $v_I = 5 \text{ V}$, find i_{D1} and v_O . (10%)
- 4. Consider the folded-cascode amplifier in Figure 4. Assume that for the BJT $|V_{BE}| = 0.7 \text{ V}$,

 $\beta = 100$, and $|V_A| = 100$ V and for the NMOS k'(W/L) = 2 mA/V², $|V_A| = 5$ V, and $V_t = 0.6$ V. Also, let $I = 100 \ \mu$ A and $V_{BIAS} = +1$ V, and assume that the output resistance of

科目:電子學

共3頁,第1頁

國立彰化師範大學 97 學年度碩士班招生考試試題

系所:<u>電機工程學系碩士班</u>

☆☆請在答案紙上作答☆☆

current source I is equal to the output resistance of its connected circuit. However, the current source 2I is assumed to be ideal.

- (a) Find g_m and r_o for each transistor. (10%)
- (b) Find the output resistance and the voltage gain of the amplifier. (10%)

- 5. Consider the voltage amplifier in Figure 5. The op-amp has $A_v = 5 \times 10^3$, $R_i = 10 \text{ k}\Omega$, and $R_o = 1 \text{ k}\Omega$, and the transistor parameters are $\beta = 100$, $V_{BE} = 0.7 \text{ V}$, and $V_A = \infty$, and for case of $R_1 = 1 \text{ k}\Omega$ and $R_2 = 10 \text{ k}\Omega$.
 - (a) Determine the feedback topology and the feedback factor β (5%).
 - (b) Find A_{if} , R_{if} , and R_{of} . (15%)

- 2 -

共3頁,第2頁

科目: 電子學

國立彰化師範大學 97 學年度碩士班招生考試試題

系所: 電機工程學系碩士班

科目: 電子學

共3頁,第3頁

☆☆請在答案紙上作答☆☆

6. Consider the quadrature oscillator in Figure 6. Assume that op-amps are ideal.

(a) Derive an expression for the loop gain of the oscillator. (10%)

(b) Find the required value of R_F for sinusoidal oscillation? (5%)

Figure 6