國立彰化師範大學96學年度碩士班招生考試試題

系所:<u>電機工程學系</u>

科目: 電子學

☆☆請在答案紙上作答☆☆

共<u>3</u>頁,第<u>1</u>頁

1. Sketch the voltage transfer characteristics (i.e., v_o vs. v_I) for the circuits in Figure 1. Assume all diodes to be ideal and $V_Z = 5 \text{ V} \cdot (10\%)$

Figure 1

2. Assuming the op amps in Figure 2 (a) and (b) to be ideal, express the output voltage/current (i.e., v_o and i_o) as a function of v_1 and v_2 . (20%)

Figure 2

- 3. (a) Sketch the small-signal equivalent circuit for the CE amplifier in Figure 3. (5%)
 - (b) Neglecting the effect of r_o , derive the expressions for the voltage gain v_o/v_s and input resistance $R_{\rm in}$ based on the equivalent circuit in part (a). (10%)

Figure 3

國立彰化師範大學96學年度碩士班招生考試試題

系所:電機工程學系

科目: 電子學

☆☆請在答案紙上作答☆☆

共<u>3</u>頁,第2頁

- 4. The MOSFETs in the circuit of Figure 4 have $V_t = 1 \text{ V}$, $\mu_n C_{ox}(W/L) = 1 \text{ mA/V}^2$, and $\lambda = 0$. Find:
 - (a) The current I, (5%)
 - (b) The range of R such that Q_3 is still in saturation. (5%)

Figure 4

Figure 5

- 5. The MOS transistor in the feedback network of Figure 5 has $V_t = 1 \text{ V}$, $\mu_n C_{ox}(W/L) = 2 \text{ mA/V}^2$, $\lambda = 0$. Utilize the feedback analysis method to find:
 - (a) The voltage gain V_o/V_s , (10%)
 - (b) The input resistance R_{in} . (5%)
- 6. The amplifier in Figure 6 has the parameters: $I = 200 \,\mu\text{A}$, $V_{ov} = 0.25 \,\text{V}$, $R_s = 200 \,\text{k}\Omega$, and $R_D = 50 \,\text{k}\Omega$. Assuming $\lambda = 0$ for Q_1 and Q_2 , find the low-frequency voltage gain of the amplifier. (10%)

Figure 6

國立彰化師範大學96學年度碩士班招生考試試題

系所:電機工程學系 科目: 電子學

☆☆請在答案紙上作答☆☆

共<u>3</u>頁,第<u>3</u>頁

- 7. Consider the second-order low-pass filter in Figure 7.
 - (a) Derive an expression for the filter transfer function. (5%)
 - (b) Find the dc gain. (5%)
 - (c) Find the pole frequency ω_0 . (5%)
 - (d) Find the quality factor Q. (5%)

Figure 7