國立彰化師範大學九十六學年度碩士班招生考試試題 系所:資訊管理學系

請在答案紙上作答

科目:統計

共<u>1</u>頁 第<u>1</u>頁

	明仕合禾紙	山作合							<u> </u>	<u> </u>	
1.	X的機率密度函	函數如下	: (20%)								
	$\int Cx$	if $0 \le x \le$	2								
	$\int (x) = \begin{cases} 0 & otherwise \end{cases}$										
	試求 (1) C (2) F(x) (3) E(X) (4) V(X)										
2	從太二學生中隨機抽取里生的十生久十位,記錄其「資訊管理」前結得到下列統計量:十生平均值為85公,標準										
2.											
	E = -2.08 E = -2.19 + -1.229 + -1.720 + -1.220 + -1.724 (200/)										
	$(F_{(0.05; 10, 10)}-2.98, F_{(0.05; 9, 9)}-5.18, t_{(0.1; 19)}-1.528, t_{(0.05; 19)}-1.729, t_{(0.1; 18)}-1.550, t_{(0.05; 18)}-1.734)$ (20%)										
3.	. To test the effects of a mobile learning training project, 7 engineers took tests before and after the training course. The										
	results are given	below.				1		1			
	Programmer	1	2	3	4	5	6	7			
	Before	830	990	1210	1000	750	1120	1120			
	Atter	970	1070	1300	1010	850	1170	1070			
	Can we say that the mobile learning project is a success?										
	Use $\alpha = 0.05$. $(t_{(0.05;7)} = 1.895, t_{(0.025;7)} = 2.365, t_{(0.05;6)} = 1.943, t_{(0.025;6)} = 2.447)$ (20%)										
4.	I. Keynes is assessing the consumer acceptance of a mobile hotel booking system. He hypothesizes that the acceptance										
	will be identical between Taipei city and Changhua city. His student randomly selects a sample of 300 consumers in Taipei										
	city (Population 1) and a sample of 400 consumers in Changhua city (Population 2). Eighty-one of the Taipei consumers										
	have high behavioral intentions to use the mobile hotel booking system, as did forty of the Changhua consumers.										
	(1) Test Keynes's hypothesis using $\alpha = 0.05$. (10%)										
	(2) Find the 95% confidence interval for the difference between the two population proportions (i.e., $P1-P2$). (10%)										
5.	5. A graduate student majoring in MIS would like to understand the determinants of customer loyalty in the context										
	e-commerce. Based on a sample of 15 e-commerce users, he developed the following estimated regression model involving										
	three independent variables to predict customer e-loyalty.										
	$CL = b_0 + b_1 CS + b_2 SC + b_3 PR$										
	$CL = b_0 + b_1 CS + b_2 SC + b_3 TK$ = 19.1 + 8.5 CS + 18.0 SC - 4.5 PR The dependent variable CL represents customer e-loyalty, while the independent variables CS, SC, and PR represent										
	customer satisfaction, switching cost, and perceived risk, respectively. The estimates of the standard deviations of b_1 , b_2 ,										
	and b_3 are $S_{b1} = 1$	2.4, $S_{b2} =$	9.5, and S_{b3}	s = 0.9, respe	ctively.		41				
	(1) Would you re	ecommen	a aropping a -1.782 to	any of the ind -2.17	3 ependent va	796 to another	the model? $(-2, 201)(15)$	0/_)			
	Using $u = 0.05$. $(l_{(0.05; 12)} = 1./\delta L$, $l_{(0.025; 12)} = 2.1/9$, $l_{(0.05; 11)} = 1./90$, $l_{(0.025; 11)} = 2.201$) (15%) (2) Based on the results of your test planse provide some insights into the management of systemer a levelty (5%)										
	(2) Suber on the results of your test, preuse provide some misights into the munigement of eustomer e royarty. (5/6)										