國立彰化師範大學103學年度碩士班招生考試試題

系所: <u>光電科技研究所</u> 科目: 工程數學

☆☆請在答案紙上作答☆☆

共1頁,第1頁

1. A resistor R, an inductor L, and a capacitor C are connected in series to a source of voltage $E(t) = E_0 \sin \omega t$, where t is time. The model of this RLC-circuit can be expressed as

$$LI''+RI'+\frac{1}{C}I=E_0\omega\cos\omega t$$

Please find the current I(t) in this RLC-circuit when it is connected to a source of voltage $E(t) = 155 \sin 377t$ with R=100 ohms, L=0.1 henry, and $C=10^{-3}$ farad. (20%)

- 2. Find the Laplace transforms of $2t^3e^{-t/2}$. (10%)
- 3. (a) Find the Fourier series of the function f(x), and period p = 2L. (10%)

$$f(x) = 0$$
 $(-2 < x < 0)$, $f(x) = 2$ $(0 < x < 2)$, $p = 2L = 4$

(b) Find the Fourier transform of the function f(x). (10%)

$$f(x) = \begin{cases} e^{2ix} & \text{if } -1 < x < 1\\ 0 & \text{otherwise} \end{cases}$$

4. (a) Evaluate the value of the definite integral $\int_{-\infty}^{\infty} \frac{x^2}{(x^2+1)^2} dx$ by using residue theory. (10%)

(b) Find the Laurent series of
$$f(z) = \sin\left(\frac{z}{1-z}\right)$$
 expanded about $z = 1$ for $|z-1| > 0$. (10%)

5. (a)Obtain eigenvalues and normalized eigenvectors for the following matrix (10%)

$$\mathbf{A} = \begin{pmatrix} 2 & 2 & 0 \\ 2 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

(b)Calculate the matrix function $f(\mathbf{A}) = 2^{\mathbf{A}}$. (10%)

6. Solve the first-order partial differential equation, $x \frac{\partial u}{\partial t} - 2xt \frac{\partial u}{\partial x} = 2tu$, $u(x,0) = x^3$. (10%)