國立彰化師範大學103學年度碩士班招生考試試題			
系所:	光電科技研究所	選考乙	科目: 近代物理
☆☆請在答案紙上作答☆☆			共1頁,第1頁

✓ Planck's constant = 6.626×10^{-34} J-s, Boltzmann's constant = 1.38×10^{-23} J/K or 8.62×10^{-5} eV/K. ✓ electron charge = 1.602×10^{-19} C, electron mass = 9.11×10^{-31} kg

1. The total energy of a proton is ten times its rest energy. What is the proton speed in c? (10%)

2. A light source of wavelength λ illuminates on a metal and ejects photoelectrons with a maximum kinetic energy of *T*. A second light source with half of the wavelength of the first light ejects photoelectrons with a maximum kinetic energy of 1.5*T*. What is the kinetic energy *T* in hc/λ ? (20%)

3. A beam of x-ray with wavelength $\lambda_c = h/mc$ (*m* is the mass of electron, *c* is the speed of light and *h* is the Plank constant) is directed toward a sample. The *x*-rays scatter from the electrons within the sample, imparting momentum to the electrons, which are initially at rest in the lab frame. After scattering, the *x*-rays are detected at various angles relative to the direction of the incoming beam using a detector that can resolve their wavelengths. (20%)

(a) What is the longest wavelength measured by the detector?

- (b) If the wavelength of the scattered *x*-rays was detected to be 1.5 λ_c , what is the *x*-ray scattering angle?
- **4.** Please answer the following questions:
 - (a) From Heisenberg uncertainty principle, please derive the uncertainty principle relation between energy and time for photons.

(30%)

- (b) The lifetime of a typical excited state in an atom is about 10 ns. Suppose an atom falls from one such excited state and emits a photon of wavelength about 600 nm. Find the fractional energy uncertainty $\Delta E/E$.
- (c) Please derive the wavelength uncertainty $\Delta\lambda/\lambda$ from the fractional energy uncertainty $\Delta E/E$ and then calculate the wavelength uncertainty $\Delta\lambda/\lambda$ of this photon.
- 5. An electron with 180 eV of kinetic energy in free space passes over a finite potential well of 60 eV deep that sketches from x = 0 to x = 1 nm. (20%)
 - (a) Please calculate the electron's wavelength in free space and when over the well.
 - (b) Please write down the possible form of wave function for this electron and sketch a possible wave function shown on a potential energy diagram as function of x.