國立彰化師範大學 97 學年度碩士班招生考試試題

系所:<u>光電科技研究所碩士班</u>

科目: 近代物理

☆☆請在答案紙上作答☆☆

共2頁,第1頁

Some constants you may need: \checkmark Planck's constant h=6.626×10⁻³⁴ J-s. \checkmark e = 1.602×10⁻¹⁹ C, __0=8.854×10⁻¹² C²/N.m², m_e=9.11×10⁻³¹ kg

1. Please explain the following terminologies in details. (20%)

- (1) Electron affinity
- (2) Ionization energy
- (3) Fermi distribution
- (4) Hamiltonian
- (5) Spin-orbit coupling
- 2. What is the selection rule? What is the Exclusion principle? How do they apply to explain the spectra of molecules? (10%)
- 3. (20%) A particle having a mass of m and a total energy E, is incident into a potential barrier of the form

$$V(x) = \begin{cases} 0 & x < 0 \& x > a \\ Vo & 0 \le x \le a \end{cases}$$

(a) If 0 < E < Vo, please calculate the transmission and the reflection coefficient of this particle as functions of E, Vo, a and k, where $k \equiv \sqrt{2m(Vo - E)} / \eta$

(b) Find the relative transmission probability if two electrons with energy of 1 and 2 eV, respectively, are incident on a barrier of 5 eV high and barrier width of 1 nm. What will this probability be changed if the barrier width is doubled?

4. (a) As shown in Fig. 1(a), a medium contains period structures. The refractive index of the medium is n, and the periods are a and b, respectively. Suppose the medium is placed into a specific liquid, and the index of the surrounding liquid is also n. There is one collimated laser beam with vacuum wavelength of $_{1}$ incident on the medium, and the incident angle is $_{.}$ First, please calculate the value of angle when first order Bragg diffraction occurs. And then, please determine the Bragg diffraction angle and sketch the diffraction beam in the figure. (20%)

國立彰化師範大學 97 學年度碩士班招生考試試題

系所:<u>光電科技研究所碩士班</u>

科目: 近代物理

☆☆請在答案紙上作答☆☆

共2頁,第2頁

(b) Suppose the same medium described above is placed into the same liquid again. Now a collimated beam containing all various wavelengths is normal incident on the medium as shown in Fig. 1(b). Please describe and calculate the optical phenomena can be observed. (15%)

 .	1	11
HIM		(h)
112.		(1))
0'	_	(-)

5. A spacecraft receding from the earth emits radio waves at a constant frequency of 10^9 Hz. If the receiver on earth can measure frequencies to the nearest hertz, at what spacecraft speed can the difference between the relativistic and classical Doppler effects be detected? (15%)