國立彰化師範大學99學年度碩士班招生考試試題

系所:<u>光電科技研究所</u> <u>選考乙</u> 科目:<u>電子學</u>

☆☆請在答案紙上作答☆☆

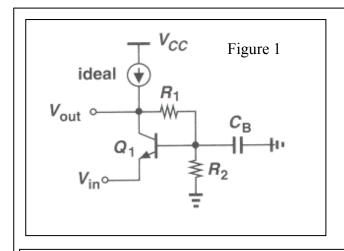
共2頁,第1頁

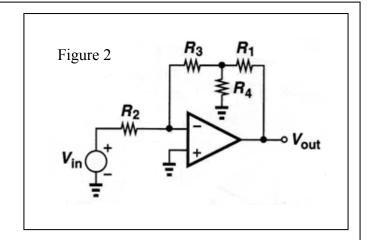
部分題目參考

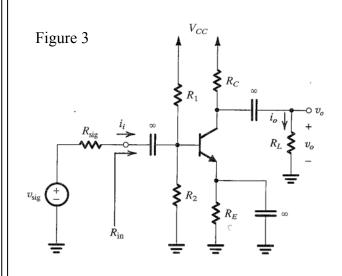
Sedra & Smith "Microelectronic Circuits 5th" Fo B. Razavi "Fundamentals of Microelectronics"

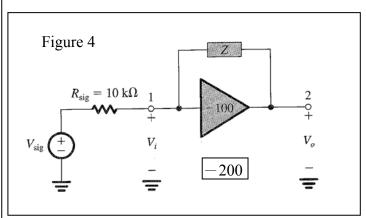
- 1. A diode is biased at a current of 1 mA. (1) Determine the current change if the voltage (V_D) of the diode changes by 1 mV. (2) Determine the voltage change if the current (I_D) changes by 10%. (10%)
- 2. Calculate the voltage gain, the input impedance (R_{in}) and the output impedance (R_{out}) of the stage depicted in **Figure 1** if $V_A = \infty$ and C_B is very large. (Note: the small-signal parameters g_m and r_π) (15%)
- 3. A common-base amplifier is designed for an input impedance of R_{in} and an output impedance of R_{out} . Neglecting Early effect, determine the voltage gain of the circuit. (10%)
- 4. Assuming $A_0 = \infty$, compute the closed-loop gain of the inverting amplifier shown in **Figure 2**. (15%)
- 5. For the common-emitter amplifier shown in **Figure 3**, let $V_{CC} = 10 \text{ V}$, $R_I = 30 \text{ k}\Omega$, $R_2 = 20 \text{ k}\Omega$, $R_E = 2 \text{ k}\Omega$, and $R_C = 4 \text{ k}\Omega$. The transistor has $\beta = 100$ and $V_A = 100 \text{ V}$. If the amplifier operates between a source for which $R_{sig} = 20 \text{ k}\Omega$, and a load $R_L = 5 \text{ k}\Omega$. (25%)
 - (1) Calculate the dc bias I_E .
 - (2) Replace the transistor with its hybrid- π model. Draw the small-signal equivalent circuit of the entire amplifier and give the values of all its components.
 - (3) Find the values of R_{in}.
 - (4) Find the voltage gain $v_o/v_{sig.}$
 - (5) Find the current gain i_o/i_i .
- 6. **Figure 4** shows an idea voltage amplifier having a gain of -200 V/V with an impedance Z connected between its output and input terminals. Find the Miller equivalent circuit when Z is (a) a 5 M Ω resistance, and (b) a 2 pF capacitance. In each case use the equivalent circuit to determine v_o/v_{sig} . (c) Determine the f_{3dB} of case (b). (15%)
- 7. The differential amplifier in **Figure 5** uses transistors with β =200. Evaluate (10%)
 - (1) The overall differential voltage gain v_o/v_{sig} (neglect the effect of r_o).
 - (2) If the R_C is changed to 20 k Ω , what is the new gain v_o/v_{sig} .

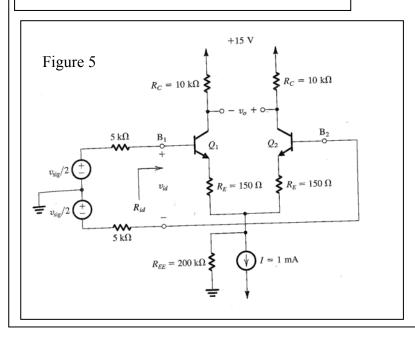
國立彰化師範大學99學年度碩士班招生考試試題


系所: 光電科技研究所


選考乙


科目: 電子學


☆☆請在答案紙上作答☆☆


共2頁,第2頁

