國立彰化師範大學 98 學年度碩士班招生考試試題

系所:光電科技研究所

科目:乙、電子學

共2頁,第1頁

☆☆請在答案紙上作答☆☆

- (a) Figure 1 shows the circuit with general impedances around the operational amplifier. V_{out}/V_{in} = ?
 (b) Figure 2 shows the circuit with general impedances around the operational amplifier. V_{out}/V_{in} = ?
 (20%)
- 2. Assuming $V_{in} = V_P \sin \omega t$, plot the output wavefrom of the circuit depicted in Figure 3 for an initial condition of +0.5 V across C₁. Assume $V_P = 5$ V. (10%)
- 3. In the circuit of Figure 4, $I_S = 8 \times 10^{-16} A$, $\beta = 100$, and $V_A = \infty$. (a) Determine the operating point of Q_1 . (b) Draw the small-signal equivalent circuit. (20%)

- 4. Consider an NMOS CG amplifier for which the current-source load is implemented with a PMOS transistor having an output resistance ro equal to that of the NMOS transistor. Design the circuit to obtain $v_0/v_i=180$ V/V and $R_{in}=5$ k Ω . Assume $|V_A|=20$ V, $\chi=0.2$, an $k'_n=120$ μ A / V².
 - (a) Plot the small signal equivalent circuit (5%).
 - (b) Specify I and W/L of the NMOS transistor. (10%).
- 5. For the circuit in Figure 5, let the bias be such that each transistor is operating at 125 μA collector current. Let the BJT have β = 160, f_T = 800 MHz, and C_μ = 0.2 pF, and neglect r_o and r_x. Also, R_{sig} = R_c = 50 kΩ. (a) Find the low-frequency gain(5%), (b) the high frequency poles (5%), and (c) an estimate of f_H (5%). (d) Finally, Explain the meaning of 3-dB frequency (5%).

國立彰化師範大學 98 學年度碩士班招生考試試題

系所:光電科技研究所

科目:乙、電子學

☆☆請在答案紙上作答☆☆

共2頁,第2頁

6. In the common gate amplifier circuit of Figure 6, Q_2 and Q_3 are matched,

 $k'_n (W/L)_n = k'_p (W/L)_p = 5 \text{ mA/V}^2$, and all transistors have $|V_t| = 0.5 \text{ V}$ and $|V_A| = 25 \text{ V}$. Transistor Q₁ has $\chi = 0.2$. The signal v_{sig} is a small sinusoidal signal with no dc component.

- (a) Neglect effect of V_A , find the required value of V_{BIAS} . (5%)
- (b) Find the values of R_{in} and $R_{\text{out.}}$ (5%)
- (c) Calculate the voltage gain v_o / v_i (5%).

