國立彰化師範大學 97 學年度碩士班招生考試試題

系所:<u>光電科技研究所碩士班</u> 科目:<u>電子學</u>

☆☆請在答案紙上作答☆☆

共3頁,第1頁

- 1. A zener diode whose nominal voltage is 10 V at 10 mA has an incremental of 50 Ω . What voltage do you expect if the diode current is halved? doubled? What is the value of V_{Z0} of the zener model? (15%)
- 2. Consider a half-wave rectifier circuit with a tri-angular-wave input of 16-V peak-to-peak amplitude and zero average and with R=1 k Ω . Assume that the diode can be represented by the piecewise-linear model with $V_{D0}=0.65$ V and $r_D=20$ Ω . Find the average value of v_O (output voltage). (15%)
- 3. (a) A pnp transistor has $v_{EB} = 0.8$ V at a collector current of 1 A. What do you expect v_{EB} to become at $i_C = 10$ mA? at $i_C = 5$ mA? (10%)
 - (b) A *pnp* transistor has a common-emitter current gain of 50. What is its common-base current gain? (10%)

(第 4~6 題題目係參考 Sedra & Smith "Microelectronic Circuits 5th")

4. (本題配分共 20%)

The Amplifier of Fig 1 consists of two identical common-emitter amplifiers connected in cascade. Observe that the input resistance of the second stage, R_{in2} , constitutes the load resistance of the first stage.

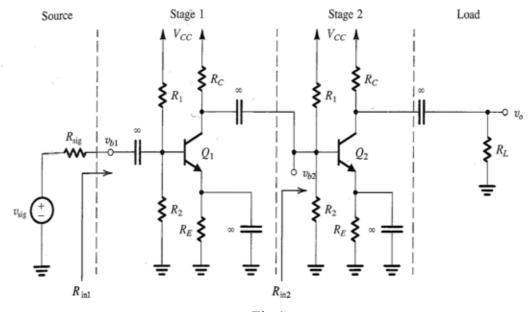


Fig 1

國立彰化師範大學 97 學年度碩士班招生考試試題

系所:<u>光電科技研究所碩士班</u> 科目:<u>電子學</u>

☆☆請在答案紙上作答☆☆

共3頁,第2頁

- (a) For V_{CC} =15 V, R_1 =100 k Ω , R_2 =50 k Ω , R_E =5 k Ω , R_C =5 k Ω , and β =100, determine the dc collector current and the dc collector voltage of each transistor. (Neglect the I_B current. All the capacitors are perfect.) (4%)
- (b) Draw the small-signal equivalent circuit of the entire amplifier and give the values of all its components. Neglect r_{o1} and r_{o2} . (Using the Hybrid- π Model) (4%)
- (c) Find $R_{\rm in1}$ and $v_{b1}/v_{\rm sig}$ for $R_{\rm sig} = 5$ k Ω . (4%)
- (d) Find R_{in2} and v_{b2}/v_{b1} . (4%)
- (e) For $R_L = 2 \text{ k}\Omega$, find v_o/v_{b2} . (2%)
- (f) Find the overall voltage gain $v_o/v_{\text{sig.}}$ (2%)

5. (本題配分共 15%)

For a particular high frequency amplifier modeled by the circuit of Fig 2, $g_m = 4$ mA/V, $R_{\text{sig}} = 180$ k Ω , $R_{\text{in}} = 0.8$ M Ω , R_L '= 10 k Ω , $C_{gs} = 3$ pF, and $C_{gd} = 0.8$ pF. There is also an output capacitance C_L '= 4 pF. Assuming all the capacitors are perfect.

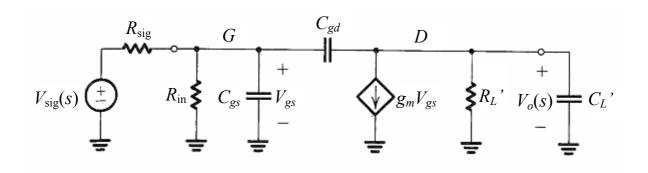


Fig 2

- (a) Find the corresponding midband voltage gain $|v_o/v_{\text{sig.}}|$ (4%)
- (b) Find the open-circuit time constant. (6%)
- (c) Explain the meaning of 3-dB frequency (3%), and find it. (2%)

國立彰化師範大學 97 學年度碩士班招生考試試題

系所:<u>光電科技研究所碩士班</u>

科目: 電子學

☆☆請在答案紙上作答☆☆

共3頁,第3頁

|6. (本題配分共 15%)

The differential amplifier circuit of Fig 3 utilizes a resistor connected to the negative power supply to establish the bias current *I*.

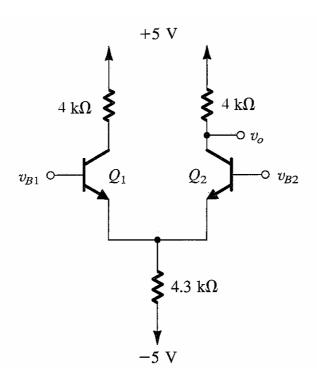


Fig 3

- (a) Sketch it differential half circuit. (4%)
- (b) For $v_{B1} = v_{id}/2$ and $v_{B2} = -v_{id}/2$, where v_{id} is a small signal with zero average, find the magnitude of the differential gain $|v_o/v_{id}|$. (2%)
- (c) For $v_{B1} = v_{B2} = v_{icm}$, find the magnitude of the common mode gain, $|v_o/v_{icm}|$. (2%)
- (d) Explain the meaning of CMRR (4%), and find it (3%).