國立彰化師範大學103學年度碩士班招生考試試題

系所: <u>資訊工程學系</u>	選考乙	科目: 離散數學				
☆☆請在答案紙上作答☆☆		共2頁,第1頁				
毎題 10%,共 100%						
1. Find the solutions for the following recurrence relations with the initial conditions given. (10%)						

(a) $a_n = a_{n-1} + 2a_{n-2}$, $a_0 = 2$ and $a_1 = 7$. (5%) (b) $a_n = 2na_{n-1}$, $a_0 = 1$. (5%)

- 2. (a) Show that $(p \rightarrow r) \land (q \rightarrow r)$ and $(p \lor q) \rightarrow r$ are logically equivalent by developing a series of logical equivalences. (5%)
 - (b) Construct a truth table for the following compound propositions: $(p \leftrightarrow q) \oplus (p \leftrightarrow \neg q)$. (5%)
- 3. Determine the following sets. (10%) (a) $\emptyset \cup \{\emptyset\}$ (2%) (b) $\{\emptyset\} \cup \{a, \emptyset, \{\emptyset\}\}$ (2%) (c) $\{\emptyset\} \cap \{a, \emptyset, \{\emptyset\}\}$ (2%) (d) $\emptyset \oplus \{a, \emptyset, \{\emptyset\}\}$ (2%)
 - (e) $\{\emptyset\} \oplus \{a, \emptyset, \{\emptyset\}\}$ (2%)
- **4.** Prove that 21 divides $4^{n+1} + 5^{2n-1}$ whenever *n* is a positive integer. (10%)
- 5. How many 4-permutations of the positive integers not exceeding 100 contain three consecutive integers k, k + 1, k + 2, in the correct order
 - (a) where these consecutive integers can perhaps be separated by other integers in the permutation?(5%)
 - (b) where they are in consecutive positions in the permutation? (5%)
- **6.** Compute 572²⁹ mod 713. (10%)
- 7. Let *R* be the relation on set X={1, 2, 3,4, 5}, where R={(1,1), (1,3), (1,5), (2,2), (2,4), (3,1), (3,3), (3,5), (4,2), (4,4), (5,1), (5,3), (5,5)}. Prove that *R* is an *equivalence relation*. (10%)

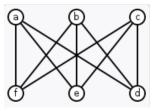
國立彰化師範大學103學年度碩士班招生考試試題

系所:	資訊工程學系	選考乙	科目: 離散數學
☆☆請在箸	答案紙上作答☆☆		共2頁,第2頁

8. For a given graph, if one can walk from node *i* to node *j* along the edges of the graph then we say that there is a *path* (*or walk*) from *i* to *j*. If we walked on *k* edges, then the walk has length *k*. Given the matrix *D* (as follow), which represents the *adjacency matrix* of a graph, determine the number of walks of length 5 from v₂ to v₄. (10%)

	v_1	[0	1	0	1	1]
D =	v_2	1	0	1	1	0
	v_3	0	1	0	0	1
	v_4	1	1	0	0	1
	v_5	1	0	1	1	0

9. A graph is *planar* if it can be drawn in the plane without its edges crossing. Show that the graph $K_{3,3}$ (as follow) is not planar. (10%)



10. Solve the equation $110 x = 1 \mod 273$. (10%)