國立彰化師範大學 97 學年度碩士班招生考試試題

科目: 離散數學及線性代數

☆☆請在答案紙上作答☆☆

共2頁,第1頁

1. Solve the recurrence relation $a_n - 3a_{n-1} = 5 \times 3^n$, where n = 1 and $a_0 = 2$. (10%)

- 2. A *coloring* of a simple graph is the assignment of a color to each vertex of the graph so that no two adjacent vertices are assigned the same color. The *chromatic number* of a graph is the least number of colors needed for a coloring of this graph. Let *m*, *n* are integers. (a)What is the chromatic number of *complete graph K_n*? (b) What is the chromatic number of the *complete bipartite graph K_{m,n}*? (c) What is the chromatic number of *cycle graph C_n*, *n* 3? (d) What is the chromatic number of *n-cube graph Q_n*, *n* 3? (e) What is the chromatic number of *wheel graph W_n*, *n* 3? (10%)
- 3. Let $m \in Z^+$ with m odd. Prove that there exists a positive integer n such that m divides 2^n -1. (10%)
- 4. Since an *equivalence relation* on a set includes a partition of that set, for n 2, *congruence modulo* n (*mod n*) partitions Z into the *n equivalence classes* [0]={..., -2n, -n, 0, n, 2n, ...}, [1]={..., -2n+1, -n+1, 1, n+1, 2n+1, 3n+1, ...}, ..., [n-1]={..., -n-1, -1, n-1, 2n-1, 3n-1, ...}. Let Z_n denote the set {[0], [1], ..., [n-1]}. Find the set of x such that 25x mod 72=1. (5%)
- 5. Let **R** be the relation with directed graph shown in Figure 1. Let *a*, *b*, *c*, *d* be a listing of the elements of the set. Use the *Warshall's Algorithm* to find the matrix of the *transitive closure* of **R**.

Figure 1

- 6. How many paths of length four are there from c to d in the graph in Figure 1? (5%)
- 7. Construct a *nondeterministic finite-state automaton* that recognizes the language generated by the regular grammar *G*=(*V*, *T*, *S*, *P*), where *V*={0, 1, *A*, *S*}, *T*={0, 1}, and the productions in *P* are S→1A, S→0, S→λ, A→0A, A→1A, and A→1. (5%)

國立彰化師範大學 97 學年度碩士班招生考試試題

系所: 資訊工程學系碩士班

科目: 離散數學及線性代數

☆☆請在答案紙上作答☆☆

共2頁,第2頁

- 8. Let *V* be R^3 and let $S = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ and $T = \{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$ be bases for R^3 , where $\mathbf{v}_1 = [2 \ 0 \ 1]^T$, $\mathbf{v}_2 = [1 \ 2 \ 0]^T$, $\mathbf{v}_3 = [1 \ 1 \ 1]^T$ and $\mathbf{w}_1 = [6 \ 3 \ 3]^T$, $\mathbf{w}_2 = [4 \ -1 \ 3]^T$, $\mathbf{w}_3 = [5 \ 5 \ 2]^T$. Find the *transition matrix* P from the *T*-basis to the *S*-basis. (5%)
- 9. Let $L:P_1 \rightarrow P_2$ be defined by L(p(x)) = xp(x). Find the matrix of *L* with respect to the basis $S = \{x, 1\}$ and $T = \{x^2, x 1, x + 1\}$ for P_1 and P_2 , respectively. (5%)
- 10. Show that if matrix A is singular, then matrix adj A is singular. (5%)

11. Evaluate $A = \begin{vmatrix} 1 & 1 & 2 & -1 \\ 0 & 1 & 0 & 3 \\ -1 & 2 & -3 & 4 \\ 0 & 5 & 0 & -2 \end{vmatrix}$ (5%)

- 12. Let A be a 2×2 matrix. If tr(A)=7 and det(A)=12, what are the eigenvalues of A. (5%)
- 13. An $n \times n$ matrix A is said to be *idempotent* if $A^2 = A$. Show that if λ is an eigenvalue of an idempotent matrix, then λ must be either 0 or 1. (5%)
- 14. If *A* is an $n \times n$ matrix, then *A* is called *nilpotent* if $A^k = O_n$ for some positive integer *k*. (a) Show that every nilpotent matrix is singular. (b) If *A* is *nilpotent*, show that $I_n A$ is nonsingular. (10%)
- 15. Find the *orthogonal* matrix *P* such that $P^{-1}AP = D$, a diagonal matrix. $A = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 1 \end{bmatrix} (10\%)$