國立彰化師範大學99學年度碩士班招生考試試題

系所:<u>車輛科技研究所</u> 選考甲 科目:<u>自動控制</u>

☆☆請在答案紙上作答☆☆

共2頁,第1頁

- 1. Find the solution x(t) of the differential equation $\ddot{x} + 3\dot{x} + 2x = 0$ and the initial conditions: x(0)=a, $\dot{x}(0)=b$, where a and b are constant. (20%)
- 2. Consider a system defined by the following state-space equations:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -5 & -1 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 2 \\ 5 \end{bmatrix} u,$$

$$y = \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.$$

Obtain the transfer function of the system. (20%)

3. A simplified version of an automobile or motorcycle suspension system is shown in Figure 1. Obtain the transfer function from input u(t) to y(t). (20%)

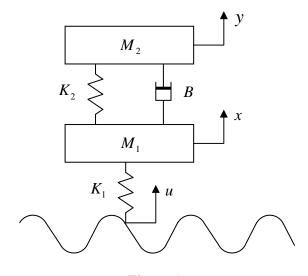


Figure 1.

國立彰化師範大學99學年度碩士班招生考試試題

系所:<u>車輛科技研究所</u> 選考甲 科目:<u>自動控制</u>

☆☆請在答案紙上作答☆☆

共2頁,第2頁

4. Determine the range of *K* for stability of the close-loop transfer function as follows. (20%)

$$\frac{K}{s(s^2+s+1)(s+2)+K}.$$

5. Obtain the transfer function Y(s)/X(s) of the system shown in Figure 2. (20%)

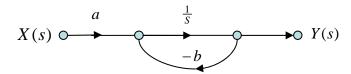


Figure 2.