國立彰化師範大學105學年度碩士班招生考試試題

系所: 車輛科技研究所	選考已	科目:
☆☆請在答案紙上作答☆☆		共1頁,第1頁
1. Describe the difference between the terms in each of the following sets: (20%)(a) macroscopic and microscopic(b) work and power(c) adiabatic and isothermal(d) totally reversible process and internally reversible process		
 2. Briefly define the following terms: (25%) (a) thermodynamic equilibrium (b) the first law of the thermodynamics (c) ideal gas (d) the Clausius statement of the second law of the thermodynamics (e) the Kelvin-Planck statement of the second law of the thermodynamics 		
3. A worker pressurizes a rigid pipe (30 mm inside diameter, 20 m long) with dry air to check for leaks. The temperature and absolute pressure of the air in the pipe are 35°C and 205kpa. The worker returns 24h later and the absolute pressure has dropped to 183kpa, while the air temperature inside the pipe has decreased to 21°C. Has the pipe leaked? If so, calculate the mass of air that has leaked through the fittings. (15%)		
4. The combustion gases within an enclosed piston and cylinder expand such that the gas pressure- cylindrical volume relationship follows the path		

 $PV^{1.5} = C$

where C is a constant. The gas pressure at the beginning of the power stroke is 3 MPa when the volume within the cylinder is 50 cm^3 . At the end of the stroke the cylinder volume is 1200 cm^3 . Calculate the work developed by the gas during a single stroke of this piston and the average power developed by the gas if there are 20 power strokes per second. (15%)

- 5. An automobile tire is inflated to an absolute pressure of 310kpa at a temperature of 20°C. After a trip the temperature of the air in the tire increases to 45°C, while the volume of the tire increases by 2 percent owing to stretching of the tire material. Calculate the air pressure in the tire after the trip. (15%)
- 6. A residential air-source heat pump is used to provide heating during the winter season. A house is to be maintained at 21°C, and on a typical day the heat transfer from the house amounts to 75000kJ/h when the outdoor-air temperature is -4°C. The heat pump has a coefficient of performance of 3.7 under these conditions. Determine the power input required for the heat pump and the heat-transfer rate to the heat pump from the outdoor. (10%)