國立彰化師範大學98學年度碩士班招生考試試題

系所: 車輛科技研究所 科目:(丙)電子學

☆☆請在答案紙上作答☆☆

共2頁,第1頁

1. (1) For the circuit in Fig. 1, derive an expression for the transfer function.

$$\frac{V_o(s)}{V_i(s)} = \frac{k}{1 + (s/\omega_o)}; \quad \text{Find k and } \omega_o. \tag{2} \text{ Determine C}_2 \text{ to obtain a 3-dB frequency of 1 kHz with}
R_1 = 1 k\Omega, R_2 = 100 k\Omega. (20\%)$$

Fig. 1

2. Use the constant voltage drop diode model to find the bridge rectifier of Fig. 2, (a) the average voltage v_o (b) the peak diode current. Where v_s (ac line voltage) is a 12v rms sinusoid, $V_D=0.7v$, $R=100\Omega$. (20%)

Fig. 2

3. Determine the transistor amplifier dc analysis shown in Fig. 3. Find V_c and I_c of the transistor. Assume $\beta = 100$. (20%)

Fig. 3

國立彰化師範大學98學年度碩士班招生考試試題

系所: 車輛科技研究所

科目:(丙)電子學

☆☆請在答案紙上作答☆☆

共2頁,第2頁

4. Fig. 4(a) shows an ideal voltage amplifier having a gain of -100 V/V with an impedance Z connected between its output and input terminals. (a) Find Z_1 and Z_2 of the Miller equivalent circuit as shown in Fig.4(b) when Z is a 1-M Ω resistance, and (b) use the equivalent circuit to determine $V_0/V_{\rm sig}$. (20%)

Fig. 4

5. Analyze the circuit of Fig. 5 to determine the voltages at all nodes and the currents through all branches. The transistor is saturated. The minimum value of β is specified to be 30. (20%)

Fig. 5