國立彰化師範大學103學年度碩士班招生考試試題

系所: 車輛科技研究所(選考1)、

電子工程學系(甲組選考甲、乙組選考甲)、

資訊工程學系積體電路設計碩士班(選考甲)、

電信工程學研究所(選考甲)

☆☆請在答案紙上作答☆☆

科目: 工程數學

共3頁,第1頁

重要提醒:

考生可任選 10 題作答並<u>在答案紙上標註確認之</u>, 否則以答案紙上答題順序前 10 題計分

1. Solve the system of linear first-order differential equations. (10%)

$$\begin{cases} \frac{dx_1(t)}{dt} = -\frac{2}{25}x_1(t) + \frac{1}{50}x_2(t) \\ \frac{dx_2(t)}{dt} = \frac{2}{25}x_1(t) - \frac{2}{25}x_2(t) \end{cases}$$

- 2. Solve the differential equation $y'' + 2y' + y = \cos x xe^{-x}$. (10%)
- 3. Solve the differential equation $x^3y''' + xy' y = x(\ln x)$. (10%)
- 4. Use the Laplace transform to solve the given initial-value problem. (10%)

$$y'' + 16y = f(t), y'(0) = 1; y(0) = 0$$

$$f(t) = \begin{cases} \cos 4t, & 0 \le t < \pi \\ 0, & t \ge \pi \end{cases}$$

5. A period function $f(x) = f(x+2\pi)$ can be represented by a trigonometric series

$$f(x) = a_0 + \sum_{n=1}^{\infty} (a_n \cos(nx) + b_n \sin(nx))$$
. Please derive the formula for the coefficients a_0 , a_n , and b_n . (10%)

6. Find the eigenvalues and the corresponding eigenfunctions of the Strum-Liouville problem. (10%)

$$y'' + \lambda y = 0$$
, $y(0) = y(1)$, $y'(0) = y'(1)$

國立彰化師範大學103學年度碩士班招生考試試題

系所: 車輛科技研究所(選考1)、

電子工程學系(甲組選考甲、乙組選考甲)、

資訊工程學系積體電路設計碩士班(選考甲)、

電信工程學研究所(選考甲)

☆☆請在答案紙上作答☆☆

共3頁,第2頁

科目: 工程數學

- 7. Find the half-range Fourier cosine expansion of $f(x) = \begin{cases} \frac{2k}{L}x, & 0 < x < \frac{L}{2} \\ \frac{2k}{L}(L-x), & \frac{L}{2} < x < L \end{cases}$. Sketch its periodic extension from -2L to 2L. (10%)
- 8. Find the complex Fourier series of $f(x) = e^x$ if $-\pi < x < \pi$ and $f(x+2\pi) = f(x)$. (10%)
- 9. Consider the Strum-Liouville boundary value problem $y'' + \lambda y = 0$, y(0) = 0, y'(L) = 0. Show that if $\phi_m(x)$ and $\phi_n(x)$ are eigenfunctions corresponding to the eigenvalues λ_m and λ_n , respectively, with $\lambda_m \neq \lambda_n$, then $\int_0^L \phi_m(x) \phi_n(x) dx = 0$. (10%)
- 10. A periodic function f(t) is defined as $f(t) = \begin{cases} 0, & -2 < t < -1 \\ 1, & -1 < t < 1 \text{ with the period of } T = 4. \text{ As } \\ 0, & 1 < t < 2 \end{cases}$

 $T = \infty$, please find the Fourier integral representation of the function. (10%)

- 11. Let X be the number of times that a fair coin that is flipped 100 times lands on heads. Use the normal approximation to find the probability that X > 70. (10%)
- 12. Consider the random process with sample functions $x(t) = cos(2\pi f_0 t + \Phi)$, where f_0 is a constant and Φ is a random variable uniformly distributed over $[-\pi, \pi]$. Please find the probability density function of Φ and, computed as statistical averages, find the first and second moments of x(t). (10%)

國立彰化師範大學103學年度碩士班招生考試試題

系所: 車輛科技研究所(選考1)、

電子工程學系(甲組選考甲、乙組選考甲)、

資訊工程學系積體電路設計碩士班(選考甲)、

電信工程學研究所(選考甲)

☆☆請在答案紙上作答☆☆

科目: 工程數學

共3頁,第3頁

13. For the system of linear equations, please use the Gauss-Jordan elimination to solve the system. (10%)

$$-x + 2y + z = 1$$

$$2x + 3y + z = -2$$

$$5x + 4y + 2z = 4$$

- 14. Following the Problem13, please use the inverse of coefficient matrix to solve the system. (10%)
- 15. Let f(x) = cos(mx) and g(x) = cos(nx) be functions in the inner product space $C[0, 2\pi]$ with the standard inner product, where m and n are positive integers. Find the inner product $\langle f, g \rangle$. (10%)