國立彰化師範大學103學年度碩士班招生考試試題

系所: 電子工程學系(甲組選考乙、乙組選考丙)、

資訊工程學系積體電路設計碩士班(選考乙)、

電信工程學研究所(選考乙)

☆☆請在答案紙上作答☆☆

共2頁,第1頁

科目: 電子學

- 1. The shunt regulator circuit uses a Zener diode D which has $V_z = 7.2 \,\mathrm{V}$ at $I_z = 10 \,\mathrm{mA}$. The dynamic resistance is 5 Ω . The minimum value of V_I is 16 V, the maximum value of I_L is 25 mA.
 - (a) If the minimum allowable I_z is 5 mA, find the maximum usable value of R_s . (10%)
 - (b) Find the line regulation $\frac{\Delta v_O}{\Delta v_I}$ and the load regulation $\frac{\Delta v_O}{\Delta I_L}$. (10%)

- 2. What is the difference between a p-n diode and a Schottky diode? (10%)
- **3.** Explain the following terminologies.
 - (a) Channel length modulation. (5%)
 - (b) Avalanche breakdown. (5%)
- **4.** In the circuit shown below, v_{sig} is a small sine-wave signal with zero average and $R_{sig} = 2 \,\mathrm{k}\Omega$. The transistor β is 100 and $V_A = 50 \,\mathrm{V}$. ($V_T = 25 \,\mathrm{mV}$)
 - (a) Find the value of R_E to establish a dc emitter current of 1 mA. (5%)
 - (b) Find the value of R_C to establish a dc collector voltage of -2 V. (5%)
 - (c) Find R_{in} and R_{out} . (10%)
 - (d) For $R_L = 5 \text{ k}\Omega$, determine the overall voltage gain v_o / v_{sig} . (10%)

國立彰化師範大學103學年度碩士班招生考試試題

系所: 電子工程學系(甲組選考乙、乙組選考丙)、

資訊工程學系積體電路設計碩士班(選考乙)、

電信工程學研究所(選考乙)

☆☆請在答案紙上作答☆☆

科目: 電子學

共2頁,第2頁

- 5. The current mirror circuit shown below has $L_1=L_2=1\,\mu\mathrm{m}$, $W_1=1\,\mu\mathrm{m}$, $V_t=1\,\mathrm{V}$, $\mu_n C_{ox}=200\,\mu\mathrm{A/V}^2$, $V_A=20\,\mathrm{V}$, $V_{DD}=5\,\mathrm{V}$
 - (a) If we want to establish a reference current, $I_{REF} = 100 \, \mu A$, calculate the value of V_{GS} , and R. (10%)
 - (b) Find the value of W_2 that will result in I_{D2} current equal to 250 μ A when the drain voltage is equal to the voltage at the gate. (10%)
 - (c) If the drain voltage increases by 5 V, find the resulting value of I_{D2} . (10%)

