
國立彰化師範大學 99 學年度碩士班招生考試試題

系所:<u>電子工程學系</u>組別:<u>甲組(選考甲)、乙組</u>科目:<u>電子學</u>

☆☆請在答案紙上作答☆☆

- 1. Fig. 1 is a two-pole low-pass filter. Find the transfer function $T(s) = V_o(s)/V_i(s)$, where $s = j\omega$. (15%)
- 2. For the common-emitter amplifier shown in Fig. 2, let $V_{CC} = 9$ V, $R_1 = 27$ k Ω , $R_2 = 15$ k Ω , $R_{E1} = 0.2$ k Ω , $R_{E2} = 1$ k Ω , and $R_C = 2.2$ k Ω . The BJT has $\beta = 100$ and $V_A = 100$ V. Calculate the dc bias current I_E . If the amplifier operates between a source for which $R_s = 10$ k Ω and a load of $R_L = 2$ k Ω , replace the BJT with its hybrid- π model, and find the values of R_{in} and the voltage gain v_o / v_s . (20%)
- 3. Consider the common-source n-MOSFET amplifier shown in Fig. 3 with threshold voltage $V_{th} = 1.8$ V, conduction parameters $k_n = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} = 0.15 \text{ mA/V}^2$, and $\lambda = 0$. (a) Calculate dc bias current I_D and voltage V_D . (b) Determine the small signal voltage gain. (c) Discuss the purpose of R_G and its effect on the small-signal operation of the amplifier. (Assume C_{c1} and C_{c2} are large enough for ac operation.) (15%)

國立彰化師範大學 99 學年度碩士班招生考試試題

系所:<u>電子工程學系</u>組別:<u>甲組(選考甲)、乙組</u>科目:<u>電子學</u>

☆☆請在答案紙上作答☆☆

- 4. (a) Sketch a two inputs NOR gate of the pseudo NMOS logic structure. (7%)
 - (b) What are the advantages and disadvantages of pseudo NMOS logic when it compared with CMOS logic? (8%)
- 5. Fig. 4 shows the circuit for determining the output resistance when v_{out} is positive and Q_3 is conducting most of the current. Neglecting the large output resistance of Q_1 , find R_o when Q_3 is sourcing an output current of 2 mA. (The bias current of Q_1 is 300 μ A, $I_{sn}=10^{-14}$ A, $\beta_n=100$, $V_{an}=125$ V, $I_{sp}=10^{-14}$ A, $\beta_p=50$, $V_{ap}=50$ V)(15%)
- 6. For the circuit in Fig. 5 $|V_t| = 1 \text{ V}$, $k W/L = 1 \text{ mA/V}^2$, $h_{fe} = 100$, and the Early voltage magnitude for all devices (including those that implement the current sources) is 80 V. The signal source V_s has a zero dc component, Find the dc voltage at the output and at the base of $Q_3(3\%)$, Find the values of A(4%), $\beta(4\%)$, $A_f(3\%)$, $R_{in}(3\%)$ and $R_{out}(3\%)$.

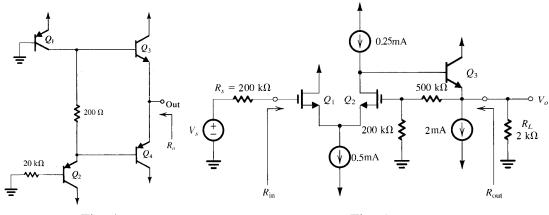


Fig. 4

Fig. 5