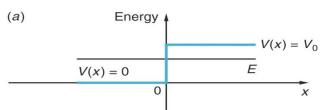
國立彰化師範大學 102 學年度碩士班招生考試試題


系所: <u>電子工程學系</u>	組別: <u>甲組(選考乙)</u>	科目: 近代物理
☆☆請在答案紙上作答☆☆		共1頁,第1頁
Physical constants:		

Planck's constant $h = 6.626 \times 10^{-34}$ J-s, $c = 3x10^8$ m/sec, $\varepsilon_0 = 8.854 \times 10^{-12}$ C²/N·m², $m_e = 9.1 \times 10^{-31}$ kg, $e = 1.602 \times 10^{-19}$ C, The Boltzmann's constant $k_B = 1.38 \times 10^{-23}$ J/K.

- 1. The energy density spectral distribution function $u(\lambda) = 8\pi k_B T \lambda^{-4}$ is derived by Rayleigh based on classical theory. It does not agree with experimental data and this phenomenon is call "ultraviolet catastrophe". Please explain what does "ultraviolet catastrophe" mean. (10%)
- 2. In a Compton Effect experiment, It is found that the incident wavelength λ_1 is shifted by 1% when the scattering angle $\theta = 120^{\circ}$. Calculate the wavelength of λ_1 . What will be the wavelength λ_2 of the shifted photon if the scattering angle is 60° ? (20%)
- 3. Rydberg-Ritz equation is $\frac{1}{\lambda_{mn}} = R\left(\frac{1}{m^2} \frac{1}{n^2}\right)$ for n > m, where m and n are integers. Please calculate the value of R (in MKS unit) based on Bohr's atomic model. Then calculate the shortest wavelength of the Balmer series. (20%)
- 4. In Moseley plot, the frequencies of the K series can be expressed as $freq. = cR(z-1)^2 \left(1-\frac{1}{n^2}\right)$.

Explain why it is $(z-1)^2$ in the formula rather than z^2 that shows up in Bohr's model? (10%)

- 5. One of the boundary conditions that a wavefunction must satisfy in quantum theory is $\int_{-\infty}^{+\infty} \psi^*(x)\psi(x)dx = 1$. Please explain what does it mean based on Born's interpretation. (10%)
- 6. A particle with total energy E incident from left hand side. There is a potential energy difference at x = 0 as illustrated in the plot. Prove that the reflection coefficient is 1 and plot the wavefunction. (20%)

7. The lifetime of an excited state of an atom is 2×10^{-7} sec. What is the width of the emitted frequency spectrum? (10%)