國立彰化師範大學98學年度碩士班招生考試試題

系所:積體電路設計研究所

☆☆請在答案紙上作答☆☆

共2頁,第1頁

科目:工程數學

- 1. (15%) Calculate the circulation of vector function $\mathbf{F} = (x y)\mathbf{i} + x^2y\mathbf{j} + xza\mathbf{k}$ counterclockwise about the circle $x^2 + y^2 = 1$. Here a is a positive constant.
- 2. (15%) Use the Fourier Transform to solve $y'' + 6y' + 5y = \delta(t-3)$.
- 3. (20%) Legendre's equation is $(1-t^2)y'' 2ty' + \mu(\mu+1)y = 0$. This equation has a power series solution of the form $y(t) = \sum_{n=0}^{\infty} a_n t^n$ that is guaranteed to be absolutely convergent in the interval -1 < t < 1.
 - (a) Find the recurrence relation for the coefficients of the power series.
 - (b) Argue, when $\mu = N$ is a nonnegative integer, that Legendre's equation has a polynomial solution, $P_N(t)$.
 - (c) Use the recurrence relation and the requirement that $P_N(1)=1$ to determine the first three Legendre polynomials, $P_1(t)$, $P_2(t)$, $P_3(t)$.
- 4. (20%) Consider the Strum-Liouville boundary value problem $y'' + 2y' + (1 + \lambda)y = 0$,

$$y(0) = y(1) = 0$$
.

- (a) Classify the Strum-Liouville boundary value problem as regular, periodic or singular; state the relevant interval.
- (b) Find the eigenvalues λ_n and eigenfunctions $\phi_n(x)$.
- (c) Find the eigenfunction expansion of the function $f(x) = \begin{cases} 0, & 0 \le x \le 0.5 \\ 1, & 0.5 < x \le 1 \end{cases}$ in the eigenfunctions of the Strum-Liouville problem.
- (d) Determine what the eigenfunction expansion converges to on the interval.

國立彰化師範大學 98 學年度碩士班招生考試試題

系所:積體電路設計研究所

科目:工程數學

☆☆請在答案紙上作答☆☆

共2頁,第2頁

5. (15%) Consider the initial value problem y'' + by' + cy = f(x), $0 < t < \infty$, $y(0) = y_a$ and

 $y'(0) = y_b$. The input function $f(t) = e^{-t}$ and the Laplace transform of the output function

y(t) is $Y(s) = \frac{s^2 + s + 1}{(s+1)(s^2 + 4)}$. Determine the constants of b, c, y_a , y_b .

6. (15%) Find the Cauchy principal value of $\int_{-\infty}^{+\infty} \frac{\cos(3x)}{x-1} dx$.