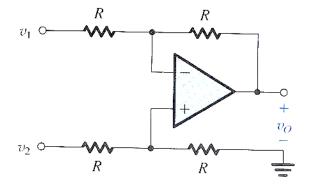

國立彰化師範大學 101 學年度碩士班招生考試試題

系所: 資訊工程學系積體電路設計碩士班 科目: 電子學


☆☆請在答案卷上作答☆☆

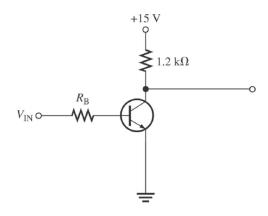
共2頁,第1頁

- 1. (15%) The following figure shows the circuit of an N-bit digital-to-analog converter (DAC). Each of the N bits of the digital word to be converted controls one of the switches. When the bit is 0, the switch is in the position labeled 0; when the bit is 1, the switch is in the position labeled 1. The analog output is the current i_O . V_{ref} is a constant reference voltage.
 - (a) Which bit is the LSB? Which is the MSB?
 - (b) For $V_{\text{ref}} = 5\text{V}$, $R = 5\text{ k}\Omega$, and N = 4, find the maximum value of i_O obtained. What is the change in i_O resulting from the LSB changing from 0 to 1?

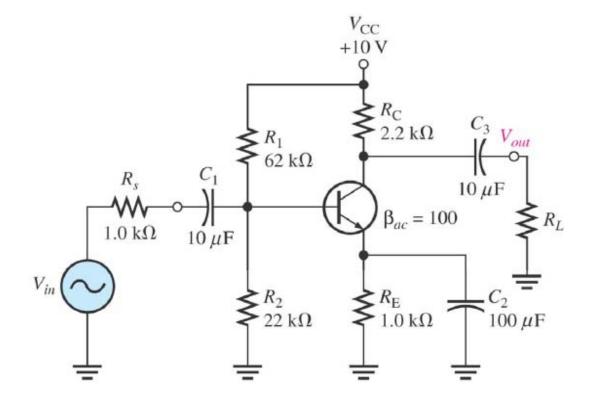
2. (15%) For the circuit shown in the following figure, express v_0 as a function of v_1 and v_2 . What is the input resistance seen by v_1 ? By v_2 alone? By a source connected between the two input terminals? By a source connected to both input terminals simultaneously?

3. (20%) A diode has $N_A = 10^{17}/\text{cm}^3$, $N_D = 10^{16}/\text{cm}^3$, $n_i = 1.5 \times 10^{10}/\text{cm}^3$, $L_p = 5 \, \mu\text{m}$, $L_n = 10 \, \mu\text{m}$. $A = 2500 \, \mu\text{m}^2$, D_p (in the n region) = 10 cm²/V_S, and D_n (in the p region) = 18 cm²/V_S. The diode is forward-biased and conducting a current $I = 0.1 \, \text{mA}$. Calculate: (a) I_S ; (b) The forward-bias voltage V; (c) The component of the current I due to hole injection and that due to electron injection across the junction; (d) τ_p and τ_n ; (e) excess hole charge in the n region Q_p , and the excess electron charge in the p region Q_n , and hence the total minority stored charge Q, and the transit time τ_T ; (f) the diffusion capacitance.

國立彰化師範大學 101 學年度碩士班招生考試試題


系所: 資訊工程學系積體電路設計碩士班

科目: 電子學


☆☆請在答案卷上作答☆☆

共2頁,第2頁

- 4. (30%) For the circuit shown in the following figure,
 - (a) What is V_{CE} when $V_{in} = 0V$?
 - (b) What minimum value of I_B is required to saturate this transistor if β_{DC} is 200?
 - (c)Calculate the maximum value of R_B when $V_{in} = 5V$?

5. (20%) Determine the critical frequency of the bypass RC circuits for the amplifier in the following figurer (r_e :=12 Ω)?

