
國立彰化師範大學九十六學年度碩士班招生考試試題

系所:積體電路設計研究所 科目: 電子學

☆☆請在答案紙上作答☆☆

共2頁 第1頁

1. $(25\%) K_p(enh) = 12.5 \times 10^{-6} \text{ amps/volt}^2$, $K_n(enh) = 25 \times 10^{-6} \text{ amps/volt}^2$, $V_{tn}(enh) = 1 \text{ V for Q1}$, $V_{tp}(enh) = -1 \text{ V for Q2}$, W/L(Q2) = 1, W/L(Q1) = 1, Q1 and Q2 are both enhancement transistors. For a 5 V supply voltage, find the transfer characteristics (V_{in} vs. V_{out}) with V_{in} varying from 0 to 5 volts and plot it on the paper. Be sure to label all transition points such as turn on, Sat/Unsat for all transistors.

- 2. (20%) For a junction, the acceptor concentration is 10^{16} cm⁻³ and the donor concentration is 10^{15} cm⁻³, find the junction built-in voltage. Assume $n_i \approx 10^{10}$ cm⁻³. Also find the width of the depletion region (W_{dep}) and its extent in each of the p and n regions when the junction is reversed biased with $V_R = 5$ V. At this value of reversed biased, calculate the magnitude of the charge stored on either side of the junction. Assume the junction area is $400 \, \mu \text{m}^2$. Also calculate C_j .
- 3. (10%) The physical origin of the forward "Early effect" is (a) A reduction in base width due to base-collector junction bias. (b) Higher electric fields at high bias voltages. (c) Base-collector junction leakage. (d) Increased efficiency of the collector. (e) Reduction in base width due to emitter-base bias.
- 4. (10%) Which of the following is **not true**? (a) A large Early voltage corresponds to a small Early effect. (b) The forward and reverse Early voltages are in general different. (c) The forward Early voltage may be expressed in terms of the collector-base junction capacitance. (d) The Early voltage is directly proportional to collector current. (e) The Early voltage is primarily determined by manufacturing methods.

國立彰化師範大學九十六學年度碩士班招生考試試題

系所:積體電路設計研究所 科目: 電子學

☆☆請在答案紙上作答☆☆

共2頁 第2頁

5.	(10%) Which of the following is not true ? (a) β_F is a function of emitter current. (b) β_F falls off at
	low values of collector current. (c) β_F falls off at high values of collector current. (d) β_F fall off is
	due to carrier generation in the emitter-base space charge region. (e) β_F fall off at high current can
	be delayed by proper device structure.

6.	(25%) An NMOS transistor, operating in the linear-resistance region with $v_{DS} = 0.1$ V, is found to
	conduct 40 μ A for $v_{GS} = 2$ V and 80 μ A for $v_{GS} = 3$ V. What is the apparent value of threshold
	voltage V_t ? If $k_n' = 40 \mu\text{A/V}^2$, what is the device W/L ratio? What current would you expect to flow
	with $v_{GS} = 2.5 \text{ V}$ and $v_{DS} = 0.15 \text{ V}$? If the device is operated at $v_{GS} = 2.5 \text{ V}$, at what value of v_{DS} will
	the drain-end of the MOSFET channel just reach pinch-off, and what is the corresponding drain
	current?