國立彰化師範大學98學年度碩士班招生考試試題

系所:電信工程學研究所

科目:工程數學

☆☆請在答案紙上作答☆☆

共2頁,第1頁

- 1. (20%) Legendre's equation is $(1-t^2)y'' 2ty' + \mu(\mu+1)y = 0$. This equation has a power series solution of the form $y(t) = \sum_{n=0}^{\infty} a_n t^n$ that is guaranteed to be absolutely convergent in the interval -1 < t < 1.
 - (a) Find the recurrence relation for the coefficients of the power series.
 - (b) Argue, when $\mu = N$ is a nonnegative integer, that Legendre's equation has a polynomial solution, $P_N(t)$.
 - (c) Use the recurrence relation and the requirement that $P_N(1)=1$ to determine the first three Legendre polynomials, $P_1(t)$, $P_2(t)$, $P_3(t)$.
- 2. (20%) Consider the boundary value problem $y'' + \lambda y = 0$, y'(0) = 0, and y'(1) + y(1) = 0.
 - (a) Find the eigenvalues λ_n and **normalized** eigenfunctions $\phi_n(x)$.
 - (b) Expand the function f(x)=1-x, $0 \le x \le 1$ in terms of the normalized eigenfunctions $\phi_n(x)$ found above.
- 3. (15%) Consider the initial value problem y'' + by' + cy = f(x), $0 < t < \infty$, $y(0) = y_a$ and $y'(0) = y_b$. The input function $f(t) = e^{-t}$ and the Laplace transform of the output function y(t) is $Y(s) = \frac{s^2 + s + 1}{(s+1)(s^2 + 4)}$. Determine the constants of b, c, y_a , y_b .
- 4. (15%) Prove that for a > 0 and $x^{\beta} \ge 0$, $\int_0^{\infty} \frac{x^{\beta}}{(x+a)^2} dx = \frac{\pi}{a} \frac{\beta a^{\beta}}{\sin(\beta \pi)}.$

國立彰化師範大學98學年度碩士班招生考試試題

系所:電信工程學研究所 科目:工程數學

☆☆請在答案紙上作答☆☆

共2頁,第2頁

5. (15%) Let matrix
$$\mathbf{A} = \begin{bmatrix} -1 & 2 & 1 & -1 & -2 \\ 2 & -4 & 1 & 5 & 7 \\ 2 & -4 & -3 & 1 & 3 \end{bmatrix}$$
. Determine the dimension of the **column**

space, null space and row space of A. Let A^T be the transpose of A. What is the dimension of null space of A^T ?

6. (15%) Let
$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 1 & -1 \\ 2 & 4 & 1 & 1 \\ 3 & 2 & -1 & -2 \\ 2 & 5 & 3 & 0 \end{bmatrix}$$
.

- (a) Find a permutation matrix \mathbf{P} such that $\mathbf{P}\mathbf{A}$ has a LU decomposition.
- (b) What's the LU decomposition of PA?