国立部化研筑上舆103舆任府石上班切上书计时

國工彰化師範大学105字千度碩士班招生考試試題					
系	所:	<u> 考丁</u>	科目: 電磁學		
\$	☆請在答案紙上作答☆☆		共2頁,第1頁		
Weighting: problem 1-9 each counts 7%					
1.	The phasor form of the plane wave, $\overline{E}(y,t) = \mathbf{a}_x E_o \cos(\omega t - \beta y) + \mathbf{a}_z E_o \cos(\omega t - \beta y + \pi/2)$, is				
	(A) $\mathbf{a}_{x}E_{o}e^{-j\beta y} + \mathbf{a}_{z}E_{o}e^{-j\beta y}$	(B) $\mathbf{a}_{x}E_{o}e^{-j\beta y}-\mathbf{a}_{z}jE_{o}e^{-j\beta y}$	$2^{-j\beta y}$		
	(C) $\mathbf{a}_{x}E_{o}e^{-j\beta y} + \mathbf{a}_{z}jE_{o}e^{-j\beta y}$	(D) $\mathbf{a}_x j E_o e^{-j\beta y} + \mathbf{a}_z E_o e^{-j\beta y}$	$e^{-j\beta y}$		
2.	2. An E-field $\overline{E}(z) = \mathbf{a}_x 10\cos(9\pi \times 10^8 t - 3\pi z)$ (V/m) existed in the air. What is the coexisted magnetic field \overline{H} at $z = 0$ plane?				
	(A) $\mathbf{a}_{y} \frac{1}{12\pi} \cos(9\pi \times 10^{8} t)$	(B) $\mathbf{a}_{y} 5 \times 10^{-8} \cos(9\pi)$	$(10^{8}t)$		
	(C) $\mathbf{a}_x \frac{1}{12\pi} \cos(9\pi \times 10^8 t)$	(D) $a_x 5 \times 10^{-8} \cos(9\pi)$	$(10^{8}t)$		
3.	3. Which one in the following is a uniform plane wave				
	(A) a _x 10cos(2 π x)cos(6 π ×10 ⁸ t - β z)	(B) $\mathbf{a}_{y} 10 \cos(2\pi x) \sin(2\pi x) \cos(2\pi x) \sin(2\pi x) \sin(2\pi$	$(6\pi \times 10^8 t - \beta z)$		
	(C) $\mathbf{a}_x 10\cos(2\pi x)\sin(3\pi y)\cos(6\pi \times 10^8 t - \beta z)$	(D) $\mathbf{a}_x 10\cos(6\pi \times 10^8 t)$	$(-\beta z)$		
4.	An E-field plane wave has the form $\mathbf{a}_E 10\cos(6t)$ direction of the E-field. What is the wave number	e form $\mathbf{a}_E 10\cos(6\pi \times 10^8 t - 3x - 4y - 5z)$, \mathbf{a}_E is the polarization is the wave number of the E-field?			
	(A) 3×10^8 (B) $6\pi \times 10^8$ (C)	2) 5 (E	D) $5\sqrt{2}$		
5.	An <i>E</i> -field has the instantaneous form $\overline{E}(y,t) =$ impinges normally on a perfectly conducting wa the conducting surface at $t = 0$? (A) $\mathbf{a}_x \frac{E_o}{120\pi}$ (B) $\mathbf{a}_z \frac{E_o}{120\pi}$ (C	$\mathbf{a}_{x}E_{o}\cos(\omega t - \beta y) + \mathbf{a}_{z}E_{o}$ Il at $y = 0$. What is the ind $\mathbf{b}_{x} \frac{E_{o}}{60\pi} + \mathbf{a}_{z}\frac{E_{o}}{60\pi} \qquad (\mathbf{E}_{x})$	$\cos(\omega t - \beta y + \pi/2)$ uced current density \overline{J}_s on 0) $\mathbf{a}_x \frac{E_o}{60\pi}$		
6.	For a uniform plane wave propagating in the free by $\overline{E} = (\mathbf{a}_x - 2\mathbf{a}_y + \mathbf{a}_z)E_o \cos(\omega t - x - y - z)$ (V (A) LP (B) RHCP (C	e space, the electric field o V/m). What is the polarizat	f the wave is given tion of the plane wave?)) EP		

國立彰化師範大學103學年度項士班招生考試試題

系所:		 科目: 電磁學
☆☆請在谷	答案紙上作答☆☆	共2頁,第2頁

7. An *x*-polarized uniform plane E-field with frequency of 1 GHz has a maximum amplitude of 10 V/m propagates along the +*z* direction in air. The wave travels into a lossless medium located at the region z ≥ 0 with the dielectric permittivity and permeability of ε = 2.25ε_o, μ = μ_o, respectively. What is the reflection coefficient at the interface z = 0?
(A) -0.1
(B) 0.1
(C) 0.2
(D) -0.2

8. A lossless transmission line of characteristic impedance Z₀ = 50 Ω is terminated by a load impedance Z_L = 25+j25 Ω. Please find the reflection coefficient at the load.
(A) 0.31 ∠ -82.12° (B) 0.31 ∠ 82.12° (C) 0.447 ∠ 116.57° (D) 0.447 ∠ 63.43°

9. A 200 (MHz) generator with $V_g = 10 \angle 0^o$ (V) and an internal resistance $Z_g = 50 \ \Omega$ is connected to a lossless 50- Ω air line (ε_o, μ_o) that is 0.45 (m) long and terminated in a 50+*j*50 Ω load. From the result, find is the value below that is close to the standing wave ratio $S(S = \frac{1 + |\Gamma_L|}{1 - |\Gamma_L|})$,

(A) 2.62 (B) 3 (C) 3.25 (D) 3.78

Weighting: problem 10 counts 15 % and problem 11 counts 22%

- 10. Given a static electric field intensity $\overline{D} = \hat{a}_x kx^2 + \hat{a}_y ky + \hat{a}_y kz^2 + 9$ (V/m) in free space, find the charge density distribution ρ_y at the point (3, 4, 0) (m). (please show all your work)
- 11. Solve the Laplace equation for the cylindrical coordinate system as following structure. Calculate the potential everywhere and the surface charge density on the V_0 metal plate. Note here the initial conditions are $V(\phi = 0) = 0$, $V(\phi = \phi_0) = V_0$, and $V(\phi = \pi) = 0$

