國立彰化師範大學 102 學年度碩士班招生考試試題

系所: <u>電信工程學研究所</u>	選考丙	科目: 電磁學
☆☆請在答案紙上作答☆☆		共1頁,第1頁

Weighting: Each problem counts 20%

- 1. If $f = x^3 y^2 z$, determine (a) ∇f and (b) $\nabla^2 f$ at the point P(2, 3, 5) in the Cartesian coordinate system. (show all your work)
- 2. Given a static electric field intensity $\overline{D} = \hat{a}_x kx + \hat{a}_y ky + \hat{a}_y kz^2$ (V/m) in free space, find the charge density distribution ρ_y at the point (3, 4, 1) (m). (please show all your work)
- 3. A spherical distribution of charge $\rho = \rho_o \frac{k}{R^2}$ exists in the region $R_i \le R \le R_0$. This charge distribution is concentrically surrounded by a conducting shell with inner radius R_i and outer radius R_o . Determine \overline{E} and V everywhere and find the surface charge density on the inner and outer surfaces of shell.
- 4. Calculate the *V* and \overline{E} at the point *P*(0, 0, *z*) due to a uniform line charge density $\rho_l = \rho_o$ of the circle having radius *b*. And what is the *V* and \overline{E} when z = 0? (show your work in detail)

- 5. A uniform plane wave in air, $\overline{E}_i(z,t) = \hat{a}_x E_0 \cos(2\pi \times 10^9 t \beta z)$ is normally incident on a medium surface at z = 0. The medium has the relative dielectric constant of $\varepsilon_r = 4$ and permeability $\mu_r = 1.0$.
 - (a) Calculate the value of β
 - (b) Find the reflection coefficient Γ at the interface
 - (c) Find the incident $\overline{H}_i(z,t)$ field