國立彰化師範大學九十六學年度碩士班招生考試試題

系所:電信工程學研究所

科目:電磁學

共<u>1</u>頁,第<u>1</u>頁

☆☆請在答案紙上作答☆☆

Weighting: Each problem counts 20%

- 1. For a scalar function f and a vector function \overline{A} , prove that $\nabla \times (f \overline{A}) = f \nabla \times \overline{A} + (\nabla f) \times \overline{A}$ and $\nabla \cdot (f \overline{A}) = f \nabla \cdot \overline{A} + \overline{A} \cdot \nabla f$ in Rectangular coordinates system.
- 2. Given a static electric field intensity $\overline{E} = \hat{a}_x kx + \hat{a}_y ky + \hat{a}_z kz$ (mV/m) in free space, find the charge density distribution ρ_y at the point (3, 4, 0) (cm). (please show all your work)
- 3. Find the capacitance of the parallel-plate capacitor shown in Figure. Find the electric field intensity between the plates if a potential V_0 is applied to the top plate and the bottom plate is grounded. Also find the surface charge density on each plate conductor.

4. A uniform plane wave in air with $\overline{E}_i(x,t) = \hat{a}_x E_o \sin(2\pi \times 10^8 t - \beta z) (V/m)$ is incident normally

on a perfect conducting wall in the z = 0 plane. Find the following in phasor form

- (a) \overline{E}_r and \overline{H}_r (reflected fields)
- (b) The induced current density on the wall
- 5. Find the expression of the input impedance, Z_{in} , for a cascaded transmission line shown in figure. If R_L is a pure real value and the λ is the guided wavelength of the wave propagated in the transmission line, find the values of R_t and l_t for the matching condition (no reflection). Calculate the Z_{in} under the match condition.

