國立彰化師範大學 102 學年度碩士班招生考試試題

系所:<u>數學系</u> ☆☆ 請在答案紙上作答☆☆

科目: <u>線性代數</u> 共1頁,第1頁

1. Let

$$V = \{(x_1, x_2, x_3, x_4, x_5) \in \mathbf{R}^5 : x_1 - 2x_2 + x_3 - x_4 + 2x_5 = 0\}.$$

Show that $S = \{(-2,0,1,-1,0), (7,1,-3,0,-1)\}$ is a linearly independent subset of V and extend S to be a basis for V. (20%)

- 2. Let *V* and *W* be vector spaces and $T: V \to W$ be linear. Suppose that $\beta = \{v_1, v_2, ..., v_n\}$ is a basis for *V* and *T* is one-to-one and onto. Prove that $T(\beta) = \{T(v_1), T(v_2), ..., T(v_n)\}$ is a basis for *W*. (15%)
- 3. Let *A* and *B* be $n \times n$ matrices with real entries such that *AB* is invertible. Prove that *A* and *B* are invertible. (15%)
- 4. Find the determinant of the $n \times n$ matrix. (15%)

$$A = \begin{bmatrix} 0 & -1 & 0 & \cdots & 0 \\ 1 & 0 & -1 & \cdots & 0 \\ 0 & 1 & 0 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & -1 \\ 0 & 0 & \cdots & 1 & 0 \end{bmatrix}.$$

5. Determine whether the matrix

$$A = \begin{bmatrix} 3 & 1 & 1 \\ 2 & 4 & 2 \\ -1 & -1 & 1 \end{bmatrix}$$

is diagonalizable. If A is diagonalizable, find an invertible matrix Q that diagonalizes A. (15%)

- 6. Let $\mathbf{A} \in \mathbf{M}_{\mathbf{n} \times \mathbf{n}}(\mathbb{C})$ be a self-ajoint matrix, that is, $A^* = A$. The standard inner product on $\mathbb{C}^{\mathbf{n}}$ is given by $\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u}^* \mathbf{v}$. (20%)
 - (a) Prove $\langle A\mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{u}, A\mathbf{v} \rangle$.
 - (b) Use (a) or otherwise, show that eigenvalues of A are real.
 - (c) Let **u** be a λ -eigenvector of A and **v** be a μ -eigenvector of A. Prove that if $\lambda \neq \overline{\mu}$, then $\langle \mathbf{u}, \mathbf{v} \rangle = 0$.