國立彰化師範大學99學年度碩士班招生考試試題

系所:<u>數學系</u> 組別:<u>乙組</u> 科目:<u>高等微積分</u>

☆☆請在答案紙上作答☆☆

共1頁,第1頁

1. (20%) Use the $\varepsilon - \delta$ definition of limit to show $\lim_{x\to 0} \sqrt{5x+7} = \sqrt{7}$.

- 2. (15%) Let f be a function from \mathbb{R} into \mathbb{R} . Suppose that $|f(x)-f(y)| \leq 2|x-y|^{1.01}$ for $x,y \in \mathbb{R}$. Show that f is a constant function on \mathbb{R} .
- 3. (25%) Let $f:[a,b]\to\mathbb{R}$ be differentiable on [a,b]. Show that f' is continuous on [a,b] if and only if for every $\varepsilon>0$ there is a $\delta(\varepsilon)>0$ such that if $0<|x-y|<\delta(\varepsilon)$ and $x,y\in[a,b]$, then

$$\left| \frac{f(x) - f(y)}{x - y} - f'(x) \right| < \varepsilon.$$

- 4. (15%) Show the series $\sum_{n=1}^{\infty} \frac{tan^{-1}(x^n)}{n^{1.03}}$ define a continuous function on \mathbb{R} .
- 5. (25%) Let $\{f_n\}$ be a sequence of continuous functions from [0,1] to \mathbb{R} . Suppose that $f_n(x) \to 0$ as $n \to \infty$ for each $x \in [0,1]$ and also that, for some constant K > 0 we have

$$\left| \int_0^1 f_n(x) dx \right| \le K$$
 for all $n \in \mathbb{N}$.

Does
$$\lim_{n \to \infty} \int_0^1 f_n(x) dx = 0$$
?
Prove or disprove it.