國立彰化師範大學98學年度碩士班招生考試試題

系所:數學系

組別:乙組

科目:高等微積分

☆☆請在答案紙上作答☆☆

共1頁,第1頁

- 1. (a) State Bolzano-Weierstrass Theorem for Rⁿ.
 (b) Suppose E ⊂ Rⁿ is a compact set, and f: E → R is a continuous function. Show that there exists c∈ E, such that f(c) ≥ f(x), for all x∈ E. (20%)
- 2. Suppose that $f: R \to R$ is a continuous function, and f(f(a)) = a for some $a \in R$. Show that there exists $c \in R$ such that f(c) = c. Hint: Use Intermediate Value Theorem. (20%)

3. Assume that $f_n \to f$ uniformly on [a,b] and suppose that there is a constant M > 0 such that $|f_n(x)| \le M$ for all $x \in [a,b]$ and all n. Define $: h_n(x) = \sin(f_n(x)), h(x) = \sin(f(x))$, for $x \in [a,b]$ Prove that $h_n \to h$ uniformly on [a,b]. (16%)

4. Give an approximate value of the integral $\int_{0}^{1} \sin(x^2) dx$, and prove that its error is less than 10⁻³. (12%)

5. Evaluate following integrals: (16%)

$$\iiint_{\mathbf{R}^{3}} e^{-2(x^{2}+y^{2}+z^{2}+xy+yz+zx)} dxdydz$$

6. Define $f(x, y) = x^2 - (y-1)^2$, $E = \{(x, y) | y \ge 0, x^2 + y^2 \le 4\}$. Find the absolute maximum and minimum of f on E. (16%)